
LispPad Library Reference
Version 1.5.2

Matthias Zenger

2020‐12‐23

Table of contents

1 Introduction 1
1.1 Overview . 1
1.2 Further reading . 1
1.3 Acknowledgments . 1

2 LispKit Base 2

3 LispKit Box 3
3.1 Boxes . 3
3.2 Mutable pairs . 3

4 LispKit Bytevector 4
4.1 Basic . 4
4.2 Advanced . 5
4.3 Input/Output . 6

5 LispKit Char‐Set 7
5.1 Constants . 7
5.2 Predicates . 8
5.3 Constructors . 8
5.4 Querying character sets . 9
5.5 Character set algebra . 10
5.6 Mutating character sets . 10
5.7 Iterating over character sets . 11

6 LispKit Char 14
6.1 Predicates . 14
6.2 Transforming characters . 15
6.3 Converting characters . 16

7 LispKit Combinator 17

8 LispKit Comparator 19
8.1 Comparator objects . 19
8.2 Predicates . 19
8.3 Constructors . 20
8.4 Default comparators . 21
8.5 Accessors and invokers . 22
8.6 Comparison predicates . 22
8.7 Syntax . 23

9 LispKit Control 24
9.1 Sequencing . 24
9.2 Conditionals . 24
9.3 Local bindings . 26

i

LispPad Library Reference 2020-12-23

9.4 Local syntax bindings . 29
9.5 Iteration . 30

10 LispKit Core 32
10.1 Basic primitives . 32
10.2 Definition primitives . 34
10.3 Importing definitions . 36
10.4 Delayed execution . 37
10.5 Symbols . 39
10.6 Booleans . 40
10.7 Conditional and inclusion compilation . 41
10.8 Multiple values . 42
10.9 Environments . 42
10.10Syntax errors . 43
10.11Utilities . 43

11 LispKit CSV 45
11.1 CSV ports . 45
11.2 Line-level API . 46
11.3 Record-level API . 46

12 LispKit Datatype 48
12.1 Usage . 48
12.2 API . 49

13 LispKit Date‐Time 51
13.1 Time zones . 51
13.2 Time stamps . 52
13.3 Date-times . 52
13.4 Date-time predicates . 55
13.5 Date-time operations . 56

14 LispKit Debug 57
14.1 Timing execution . 57
14.2 Tracing procedure calls . 57
14.3 Macro expansion . 58
14.4 Disassembling code . 59
14.5 Execution environment . 60

15 LispKit Disjoint‐Set 61

16 LispKit Draw 62
16.1 Drawings . 62
16.2 Shapes . 66
16.3 Images . 68
16.4 Transformations . 70
16.5 Colors . 71
16.6 Fonts . 73
16.7 Points . 74
16.8 Size . 74
16.9 Rects . 75

17 LispKit Draw Turtle 76

Table of contents ii

LispPad Library Reference 2020-12-23

18 LispKit Dynamic 78
18.1 Dynamic bindings . 78
18.2 Continuations . 79
18.3 Exceptions . 80
18.4 Exiting . 83

19 LispKit Enum 84

20 LispKit Gvector 87
20.1 Predicates . 87
20.2 Constructors . 87
20.3 Iterating over vector elements . 88
20.4 Managing vector state . 89
20.5 Destructive growable vector operations . 90
20.6 Converting growable vectors . 91

21 LispKit Hashtable 93
21.1 Constructors . 93
21.2 Type tests . 94
21.3 Inspection . 94
21.4 Hash functions . 95
21.5 Procedures . 96
21.6 Composition . 97

22 LispKit Heap 98

23 LispKit Iterate 99

24 LispKit List 101
24.1 Basic constructors and procedures . 102
24.2 Predicates . 103
24.3 Composing and transforming lists . 103
24.4 Finding and extracting elements . 106

25 LispKit Log 109
25.1 Log severities . 109
25.2 Log formatters . 110
25.3 Logger objects . 110
25.4 Logging procedures . 111
25.5 Logging syntax . 112

26 LispKit Markdown 114
26.1 Data Model . 114

26.1.1 Blocks . 114
26.1.2 Inline Text . 115

26.2 Creating Markdown documents . 115
26.3 Processing Markdown documents . 116
26.4 API . 116

27 LispKit Match 119
27.1 Simple patterns . 119
27.2 Composite patterns . 120
27.3 Advanced patterns . 121
27.4 Pattern grammar . 122

Table of contents iii

LispPad Library Reference 2020-12-23

27.5 Matching API . 123

28 LispKit Math 125
28.1 Numerical constants . 125
28.2 Predicates . 125
28.3 Exactness and rounding . 127
28.4 Operations . 128
28.5 Division and remainder . 130
28.6 Fractional numbers . 132
28.7 Complex numbers . 132
28.8 String representation . 132
28.9 Bitwise operations . 133
28.10Fixnum operations . 135
28.11Floating-point operations . 138

29 LispKit Object 140
29.1 Introduction . 140

29.1.1 Generic procedures . 140
29.1.2 Objects . 140
29.1.3 Inheritance . 141
29.1.4 Classes . 141

29.2 Procedural object interface . 142
29.3 Declarative object interface . 143
29.4 Procedural class interface . 143

29.4.1 Instance methods . 143
29.4.2 Class methods . 144

29.5 Declarative class interface . 144

30 LispKit Port 145
30.1 Default ports . 145
30.2 Predicates . 145
30.3 General ports . 146
30.4 File ports . 146
30.5 String ports . 147
30.6 Bytevector ports . 148
30.7 URL ports . 149
30.8 Asset ports . 150
30.9 Reading from ports . 150
30.10Writing to ports . 152

31 LispKit Queue 154

32 LispKit Record 156
32.1 Declarative API . 156
32.2 Procedural API . 157

33 LispKit Regexp 159
33.1 Regular expressions . 159

33.1.1 Meta-characters . 159
33.2 Regular expression operators . 160

33.2.1 Template Matching . 161
33.2.2 Flag options . 161

33.3 API . 161

Table of contents iv

LispPad Library Reference 2020-12-23

34 LispKit Set 166
34.1 Constructors . 166
34.2 Inspection . 166
34.3 Predicates . 167
34.4 Procedures . 167
34.5 Mutators . 168

35 LispKit SQLite 169
35.1 Introduction . 169
35.2 API . 170

35.2.1 SQLite version retrieval . 170
35.2.2 Database options . 171
35.2.3 Database objects . 171
35.2.4 SQL statements . 173

36 LispKit Stack 175

37 LispKit Stream 177
37.1 Benefits of using streams . 177
37.2 Stream abstractions . 177
37.3 Stream API . 178

38 LispKit String 184
38.1 Basic constructors and procedures . 184
38.2 Predicates . 185
38.3 Composing and extracting strings . 186
38.4 Manipulating strings . 188
38.5 Iterating over strings . 189
38.6 Converting strings . 189
38.7 Input/Output . 189

39 LispKit System 190
39.1 Source files . 190
39.2 File paths . 190
39.3 File operations . 192
39.4 Network operations . 194
39.5 Time operations . 195
39.6 Locales . 195
39.7 Execution environment . 196

40 LispKit System OS 199

41 LispKit Test 200
41.1 Test groups . 200
41.2 Defining test groups . 201
41.3 Comparing actual with expected values . 202
41.4 Test utilities . 203

42 LispKit Type 204
42.1 Usage of the procedural API . 204
42.2 Usage of the declarative API . 205
42.3 API . 207

Table of contents v

LispPad Library Reference 2020-12-23

43 LispKit Vector 209
43.1 Predicates . 209
43.2 Constructors . 210
43.3 Iterating over vectors . 212
43.4 Managing vector state . 212
43.5 Destructive vector operations . 213
43.6 Converting vectors . 214

44 LispPad AppleScript 215
44.1 Script authorization . 215
44.2 Script integration . 215
44.3 Exchanging data . 216
44.4 API . 217

45 LispPad Speech 218
45.1 Speech synthesis . 218
45.2 Speakers . 218
45.3 Voices . 220

46 LispPad System 222
46.1 Windows . 222
46.2 Edit Windows . 223
46.3 Graphics Windows . 223
46.4 Utilities . 224

47 LispPad Turtle 226

48 SRFI Libraries 228

Table of contents vi

1 Introduction

1.1 Overview

LispPad is an integrated development environment for Scheme on macOS. LispPad’s Scheme interpreter
is based on LispKit, a R7RS-compliant implementation of Scheme which comes with a large number of
pre-packaged Scheme libraries. This document is a reference manual for the core Scheme libraries coming
with LispKit. The LispPad homepage provides access to frequently updated online documentation.

1.2 Further reading

There are several books which can be recommended for learning Scheme and related topics:
• “The Scheme Programming Language” by R. Kent Dybvig provides a comprehensive introduction
into Scheme based on R6RS. It discusses several advanced topics and covers many Scheme libraries.

• “Simply Scheme: Introducing Computer Science” by Brian Harvey and Matthew Wright introduces
Scheme slowly to beginners.

• “Structure and Interpretation of Computer Programs” by Harold Abelson and Gerald Jay Syssman
is the ultimate book teaching Computer Science, all in Scheme. The book covers a broad range of
Computer Science topics and should be standing on every Scheme programmers desk.

• “Essentials of Programming Languages” by Daniel P. Friedman and Mitchell Wand provides a deep
understanding of the essential concepts of programming languages and uses Scheme as the language
to implement the concepts.

1.3 Acknowledgments

Some of this documentation is derived from existing Scheme language specifications, such as the R5RS,
the R6RS, and the R7RS standards. In recent years, these standards evolved using the SRFI process, which
provides access to a large number of standardized Scheme components and libraries.
The following people have contributed over the last 20 years to the evolution, standardization, and docu-
mentation of Scheme: R. Kelsey, W. Clinger, J. Rees, H. Abelson, N. I. Adams IV, D. H. Bartley, G. Brooks,
R. K. Dybvig, D. P. Friedman, R. Halstead, C. Hanson, C. T. Haynes, E. Kohlbecker, D. Oxley, K. M. Pitman,
M. Sperber, M. Flatt, A. v. Straaten, A. Shinn, J. Cowan, A. A. Gleckler, S. Ganz, A. W. Hsu, B. Lucier, E.
Medernach, A. Radul, J. T. Read, D. Rush, B. L. Russel, O. Shivers, A. Snell-Pym, and G. J. Sussman.

1

http://lisppad.objecthub.net
https://github.com/objecthub/swift-lispkit
http://r7rs.org
http://lisppad.objecthub.net/docs/libs/
https://www.scheme.com/tspl4/
https://people.eecs.berkeley.edu/~bh/ss-toc2.html
https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book.html
https://mitpress.mit.edu/books/essentials-programming-languages-third-edition
https://schemers.org/Documents/Standards/R5RS/
http://www.r6rs.org
http://r7rs.org
https://srfi.schemers.org

2 LispKit Base

Library (lispkit base) aggregates all exported values, parameter objects, and functions from the
following libraries and re-exports them.
• (lispkit box)
• (lispkit bytevector)
• (lispkit char)
• (lispkit control)
• (lispkit core)
• (lispkit dynamic)
• (lispkit hashtable)
• (lispkit list)
• (lispkit math)
• (lispkit port)
• (lispkit record)
• (lispkit string)
• (lispkit system)
• (lispkit type)
• (lispkit vector)

2

3 LispKit Box

LispKit is a R7RS-compliant implementation with one exception: pairs are immutable. This library pro-
vides implementations of basic mutable data structures with reference semantics: mutable multi-place
buffers, also called boxes, and mutable pairs. The difference between a two-place box and a mutable pair
is that a mutable pair allows mutations of the two elements independent of each other.

3.1 Boxes

(box? obj) procedure
Returns #t if obj is a box; #f otherwise.
(box obj …) procedure
Returns a new box object that contains the objects obj ….
(unbox box) procedure
Returns the current contents of box. If multiple values have been stored in the box, unbox will return
multiple values. This procedure fails if box is not referring to a box.
(set-box! box obj …) procedure
Sets the content of box to objects obj …. This procedure fails if box is not referring to a box.
(update-box! box proc) procedure
Invokes procwith the content of box and stores the result of this function invocation in box. update-box!
is implemented like this:

(define (update-box! box proc)
(set-box! box (apply-with-values proc (unbox box))))

3.2 Mutable pairs

(mpair? obj) procedure
Returns #t if v is a mutable pair (mpair); #f otherwise.
(mcons car cdr) procedure
Returns a new mutable pair whose first element is set to car and whose second element is set to cdr.
(mcar mpair) procedure
Returns the first element of the mutable pair mpair.
(mcdr mpair) procedure
Returns the second element of the mutable pair mpair.
(set-mcar! mpair obj) procedure
Sets the first element of the mutable pair mpair to obj.
(set-mcdr! mpair obj) procedure
Sets the second element of the mutable pair mpair to obj.

3

4 LispKit Bytevector

Bytevectors represent blocks of binary data. They are fixed-length sequences of bytes, where a byte is a
fixnum in the range from 0 to 255 inclusive. A bytevector is typically more space-efficient than a vector
containing the same values.
The length of a bytevector is the number of elements that it contains. The length is a non-negative integer
that is fixed when the bytevector is created. The valid indexes of a bytevector are the exact non-negative
integers less than the length of the bytevector, starting at index zero as with vectors.
Bytevectors are written using the notation #u8(byte ...) . For example, a bytevector of length 3
containing the byte 0 in element 0, the byte 10 in element 1, and the byte 5 in element 2 can be written
as follows: #u8(0 10 5) . Bytevector constants are self-evaluating, so they do not need to be quoted.

4.1 Basic

(bytevector? obj) procedure
Returns #t if obj is a bytevector; otherwise, #f is returned.
(bytevector byte …) procedure
Returns a newly allocated bytevector containing its arguments as bytes in the given order.

(bytevector 1 3 5 1 3 5) ⇒ #u8(1 3 5 1 3 5)
(bytevector) ⇒ #u8()

(make-bytevector k) procedure
(make-bytevector k byte)
The make-bytevector procedure returns a newly allocated bytevector of length k. If byte is given,
then all elements of the bytevector are initialized to byte, otherwise the contents of each element are
unspecified.

(make-bytevector 3 12) ⇒ #u8(12 12 12)

(bytevector-length bytevector) procedure
Returns the length of bytevector in bytes as an exact integer.
(bytevector-u8-ref bytevector k) procedure
Returns the k-th byte of bytevector. It is an error if k is not a valid index of bytevector.

(bytevector-u8-ref #u8(1 1 2 3 5 8 13 21) 5) ⇒ 8

(bytevector-u8-set! bytevector k byte) procedure
Stores byte as the k-th byte of bytevector. It is an error if k is not a valid index of bytevector.

4

LispPad Library Reference 2020-12-23

(let ((bv (bytevector 1 2 3 4)))
(bytevector-u8-set! bv 1 3)
bv)

⇒ #u8(1 3 3 4)

(bytevector-copy bytevector) procedure
(bytevector-copy bytevector start)
(bytevector-copy bytevector start end)
Returns a newly allocated bytevector containing the bytes in bytevector between start and end. If end is
not provided, it is assumed to be the length of bytevector. If start is not provided, it is assumed to be 0.

(define a #u8(1 2 3 4 5))
(bytevector-copy a 2 4)) ⇒ #u8(3 4)

(bytevector-copy! to at from) procedure
(bytevector-copy! to at from start)
(bytevector-copy! to at from start end)
Copies the bytes of bytevector from between start and end to bytevector to, starting at at. The order in
which bytes are copied is unspecified, except that if the source and destination overlap, copying takes
place as if the source is first copied into a temporary bytevector and then into the destination. This can
be achieved without allocating storage by making sure to copy in the correct direction in such circum-
stances.
It is an error if at is less than zero or greater than the length of to. It is also an error if (- (bytevector-
length to) at) is less than (- end start) .

(define a (bytevector 1 2 3 4 5))
(define b (bytevector 10 20 30 40 50))
(bytevector-copy! b 1 a 0 2)
b ⇒ #u8(10 1 2 40 50)

(bytevector-append bytevector …) procedure
Returns a newly allocated bytevector whose elements are the concatenation of the elements in the given
bytevectors.

(bytevector-append #u8(0 1 2) #u8(3 4 5))
⇒ #u8(0 1 2 3 4 5)

4.2 Advanced

(utf8->string bytevector) procedure
(utf8->string bytevector start)
(utf8->string bytevector start end)
(string->utf8 string)
(string->utf8 string start)
(string->utf8 string start end)
These procedures translate between strings and bytevectors that encode those strings using the UTF-8
encoding. The utf8->string procedure decodes the bytes of a bytevector between start and end and re-
turns the corresponding string. The string->utf8 procedure encodes the characters of a string between
start and end and returns the corresponding bytevector.

LispKit Bytevector 5

LispPad Library Reference 2020-12-23

It is an error for bytevector to contain invalid UTF-8 byte sequences.

(utf8->string #u8(#x41)) ⇒ "A"
(string->utf8 "λ") ⇒ #u8(#xCE #xBB)

(bytevector->base64 bytevector) procedure
(bytevector->base64 bytevector start)
(bytevector->base64 bytevector start end)
bytevector->base64 encodes bytevector between start and end as a string consisting of ASCII characters
using the Base64 encoding scheme. If end is not provided, it is assumed to be the length of bytevector. If
start is not provided, it is assumed to be 0.
(base64->bytevector str) procedure
(base64->bytevector str start)
(base64->bytevector str start end)
base64->bytevector assumes string str is encoded using Base64 between start and end and returns a
corresponding new decoded bytevector.
If is an error if str between start and end is not a valid Base64-encoded string. If end is not provided, it is
assumed to be the length of str. If start is not provided, it is assumed to be 0.
(bytevector-deflate bytevector) procedure
(bytevector-deflate bytevector start)
(bytevector-deflate bytevector start end)
bytevector-deflate encodes bytevector between start and end using the Deflate data compression
alogrithm returning a new compressed bytevector. If end is not provided, it is assumed to be the length
of bytevector. If start is not provided, it is assumed to be 0.
(bytevector-inflate bytevector) procedure
(bytevector-inflate bytevector start)
(bytevector-inflate bytevector start end)
bytevector-inflate assumes bytevector is encoded using the Deflate data compression alogrithm be-
tween start and end. The procedure returns a corresponding new decoded bytevector.
If is an error if bytevector, between start and end, is not encoded using Deflate. If end is not provided, it is
assumed to be the length of bytevector. If start is not provided, it is assumed to be 0.

4.3 Input/Output

(read-binary-file path) procedure
Reads the file at path and stores its content in a new bytevector which gets returned by read-binary-
file .
(write-binary-file path bytevector) procedure
(write-binary-file path bytevector start)
(write-binary-file path bytevector start end)
Writes the bytes of bytevector between start and end into a new binary file at path. If end is not provided,
it is assumed to be the length of bytevector. If start is not provided, it is assumed to be 0.

LispKit Bytevector 6

5 LispKit Char‐Set

Library (lispkit char-set) implements efficient means to represent and manipulate sets of characters.
Its design is based on SRFI 14 but the implementation is specific to the definition of characters in LispKit;
i.e. library (lispkit char-set) assumes that characters are UTF-16 code units.
As opposed to SRFI 14, it can be assumed that the update procedures ending with “!” are mutating the
corresponding character set. This means that clients of these procedures may rely on these procedures
performing their functionality in terms of side effects.
In the procedure specifications below, the following conventions are used:
• A cs parameter is a character set.
• A s parameter is a string.
• A char parameter is a character.
• A char-list parameter is a list of characters.
• A pred parameter is a unary character predicate procedure, returning either #t or #f when applied
to a character.

• An obj parameter may be any value at all.
Passing values to procedures with these parameters that do not satisfy these types is an error.
Unless otherwise noted in the specification of a procedure, procedures always return character sets that
are distinct from the parameter character sets (unless the procedure mutates a character set and its name
ends with “!”). For example, char-set-adjoin is guaranteed to provide a fresh character set, even if it
is not given any character parameters.
Library (lispkit char-set) supports both mutable as well as immutable character sets. Character sets
are assumed to be mutable unless they are explicitly specified to be immutable.

5.1 Constants

char-set:lower-case constant
char-set:upper-case
char-set:title-case
char-set:letter
char-set:digit
char-set:letter+digit
char-set:graphic
char-set:printing
char-set:whitespace
char-set:newlines
char-set:iso-control
char-set:punctuation
char-set:symbol
char-set:hex-digit
char-set:blank

7

LispPad Library Reference 2020-12-23

char-set:ascii
char-set:empty
char-set:full
Library (lispkit char-set) predefines these frequently used immutable character sets.
Note that there may be characters in char-set:letter that are neither upper or lower case. The char-
set:whitespaces character set contains whitespace and newline characters. char-set:blanks only
contains whitespace (i.e. “blank”) characters. char-set:newlines only contains newline characters.

5.2 Predicates

(char-set? obj) procedure
Returns #t if obj is a character set, otherwise returns #f .
(char-set-empty? cs) procedure
Returns #t if the character set cs does not contain any characters, otherwise returns #f .
(char-set=? cs …) procedure
Returns #t if all the provided character sets cs… contain the exact same characters; returns #f otherwise.
For both corner cases, (char-set=?) and (char-set=? cs) , char-set=? returns #t .
(char-set<=? cs …) procedure
Returns #t if every character set cs-i is a subset of character set cs-i+1; returns #f otherwise. For both
corner cases, (char-set<=?) and (char-set<=? cs) , char-set<=? returns #t .
(char-set-disjoint? cs1 cs2) procedure
Returns #t if character sets cs1 and cs2 are disjoint, i.e. they do not share a single character; returns #f
otherwise.
(char-set-contains? cs char) procedure
Returns #t if character char is contained in character set cs; returns #f otherwise.
(char-set-every? pred cs) procedure
(char-set-any? pred cs)
The char-set-every? procedure returns #t if predicate pred returns #t for every character in the
character set cs. Likewise, char-set-any? applies pred to every character in character set cs, and returns
#t if there is at least one character for which pred returns #t . If no character produces a #t value, it
returns #f . The order in which these procedures sequence through the elements of cs is not specified.

5.3 Constructors

(char-set char …) procedure
Return a newly allocated mutable character set containing the given characters.
(immutable-char-set char …) procedure
Return a newly allocated immutable character set containing the given characters.
(char-set-copy cs) procedure
(char-set-copy cs mutable?)
Returns a newly allocated copy of the character set cs. The copy is mutable by default unless parameter
mutable? is provided and set to #f .

LispKit Char-Set 8

LispPad Library Reference 2020-12-23

(list->char-set char-list) procedure
(list->char-set char-list base-cs)
Return a newly allocated mutable character set containing the characters in the list of characters char-list.
If character set base-cs is provided, the characters from base-cs are added to it as well.
(string->char-set s) procedure
(string->char-set s base-cs)
Return a newly allocated mutable character set containing the characters of the string s. If character set
base-cs is provided, the characters from base-cs are added to it as well.
(ucs-range->char-set lower upper) procedure
(ucs-range->char-set lower upper base-cs)
(ucs-range->char-set lower upper limit base-cs)
Returns a newly allocated mutable character set containing every character whose ISO/IEC 10646 UCS-4
code lies in the half-open range [lower,upper). lower and upper are exact non-negative integers where
lower <= upper <= limit is required to hold. limit is either an exact non-negative integer specifying the
maximum upper limit, or it is #t which specifies the maximum UTF-16 code unit value. If limit is not
provided, a very large default is assumed (equivalent to limit being #f).
This signature is compatible with the SRFI 16 specificationwhich states that if the requested range includes
unassigned UCS values, these are silently ignored. If the requested range includes “private” or “user space”
codes, these are passed through transparently. If any code from the requested range specifies a valid,
assigned UCS character that has no corresponding representative in the implementation’s character type,
then
1. an error is raised if limit is #t , and
2. the code is ignored if limit is #f (the default).

If character set base-cs is provided, the characters of base-cs are included in the newly allocated mutable
character set.
(char-set-filter pred cs) procedure
(char-set-filter pred cs base-cs)
Returns a new character set containing every character c in character set cs such that (pred c) returns true.
If character set base-cs is provided, the characters specified by base-cs are added to it.
(->char-set x) procedure
Coerces object x into a character set. x may be a string, character or character set. A string is converted to
the set of its constituent characters; a character is converted to a singleton character set; a character set is
returned as is. This procedure is intended for use by other procedures that want to provide “user-friendly”,
wide-spectrum interfaces to their clients.

5.4 Querying character sets

(char-set-size cs) procedure
Returns the number of elements in character set cs.
(char-set-count pred cs) procedure
Apply pred to the characters of character set cs, and return the number of characters that caused the
predicate to return #t .
(char-set->list cs) procedure
This procedure returns a list of the characters of character set cs. The order in which cs’s characters appear
in the list is not defined, and may be different from one call to another.

LispKit Char-Set 9

LispPad Library Reference 2020-12-23

(char-set->string cs) procedure
This procedure returns a string containing the characters of character set cs. The order in which cs’s
characters appear in the string is not defined, and may be different from one call to another.
(char-set-hash cs) procedure
(char-set-hash cs bound)
Compute a hash value for the character set cs. bound is a non-negative exact integer specifying the range
of the hash function. A positive value restricts the return value to the range [0, bound). If bound is either
zero or not given, a default value is used, chosen to be as large as it is efficiently practical.

5.5 Character set algebra

(char-set-adjoin cs char …) procedure
Return a newly allocated mutable copy of cs into which the characters char … were inserted.
(char-set-delete cs char …) procedure
Return a newly allocated mutable copy of cs from which the characters char … were removed.
(char-set-complement cs) procedure
Return a newly allocated character set containing all characters that are not contained in cs.
(char-set-union cs …) procedure
(char-set-intersection cs …)
(char-set-difference cs …)
(char-set-xor cs …)
(char-set-diff+intersection cs1 cs2 …)
These procedures implement set complement, union, intersection, difference, and exclusive-or for char-
acter sets. The union, intersection and xor operations are n-ary. The difference function is also n-ary,
associates to the left (that is, it computes the difference between its first argument and the union of all
the other arguments), and requires at least one argument.
Boundary cases:

(char-set-union) ⇒ char-set:empty
(char-set-intersection) ⇒ char-set:full
(char-set-xor) ⇒ char-set:empty
(char-set-difference cs) ⇒ cs

char-set-diff+intersection returns both the difference and the intersection of the arguments, i.e. it
partitions its first parameter. It is equivalent to (values (char-set-difference cs1 cs2 ...) (char-
set-intersection cs1 (char-set-union cs2 ...))) but can be implemented more efficiently.
(char-set-filter pred cs) procedure
(char-set-filter pred cs base-cs)
Returns a new character set containing every character c in cs such that (pred c) returns #t . If character
set base-cs is provided, the characters specified by pred are added to a copy of it.

5.6 Mutating character sets

(char-set-adjoin! cs char …) procedure
Insert the characters char … into the character set cs.

LispKit Char-Set 10

LispPad Library Reference 2020-12-23

(char-set-delete! cs char …) procedure
Remove the characters char … from the character set cs.
(char-set-complement! cs) procedure
Complement the character set cs by including all characters that were not contained in cs previously and
by removing all previously contained characters.
(char-set-union! cs1 cs2 …) procedure
(char-set-intersection! cs1 cs2 …)
(char-set-difference! cs1 cs2 …)
(char-set-xor! cs1 cs2 …)
(char-set-diff+intersection! cs1 cs2 cs3 …)
These are update variants of the set-algebra functions mutating the first character set cs1 instead of creat-
ing a new one. char-set-diff+intersection! will perform a side-effect on both of its two required
parameters cs1 and cs2.
(char-set-filter! pred cs base-cs) procedure
Adds every character c in cs for which (pred c) returns #t to the given character set base-cs .
(list->char-set! char-list base-cs) procedure
Add the characters from the character list char-list to character set base-cs and return themutated character
set base-cs.
(string->char-set! s base-cs) procedure
Add the characters of the string s to character set base-cs and return the mutated character set base-cs.
(ucs-range->char-set! lower upper base-cs) procedure
(ucs-range->char-set! lower upper limit base-cs)
Mutates the mutable character set base-cs including every character whose ISO/IEC 10646 UCS-4 code
lies in the half-open range [lower,upper). lower and upper are exact non-negative integers where lower <=
upper <= limit is required to hold. limit is either an exact non-negative integer specifying the maximum
upper limit, or it is #t which specifies the maximum UTF-16 code unit value. If limit is not provided, a
very large default is assumed (equivalent to limit being #f).
(char-set-unfold! f p g seed base-cs) procedure
This is a fundamental constructor for character sets.
• g is used to generate a series of “seed” values from the initial seed: seed, (g seed), (g2 seed), (g3
seed), …

• p tells us when to stop by returning #t when applied to one of these seed values.
• f maps each seed value to a character. These characters are added to the base character set base-cs
to form the result. char-set-unfold! adds the characters by mutating base-cs as a side effect.

5.7 Iterating over character sets

(char-set-cursor cs) procedure
(char-set-ref cs cursor)
(char-set-cursor-next cs cursor)
(end-of-char-set? cursor)
Cursors are a low-level facility for iterating over the characters in a character set cs. A cursor is a value that
indexes a character in a character set. char-set-cursor produces a new cursor for a given character set.
The set element indexed by the cursor is fetched with char-set-ref . A cursor index is incremented with
char-set-cursor-next ; in this way, code can step through every character in a character set. Stepping

LispKit Char-Set 11

LispPad Library Reference 2020-12-23

a cursor “past the end” of a character set produces a cursor that answers true to end-of-char-set? . It
is an error to pass such a cursor to char-set-ref or to char-set-cursor-next .
A cursor value may not be used in conjunction with a different character set; if it is passed to char-set-
ref or char-set-cursor-next with a character set other than the one used to create it, the results and
effects are undefined. These primitives are necessary to export an iteration facility for character sets to
loop macros.

(define cs (char-set #\G #\a #\T #\e #\c #\h))

;; Collect elts of CS into a list.
(let lp ((cur (char-set-cursor cs)) (ans '()))

(if (end-of-char-set? cur) ans
(lp (char-set-cursor-next cs cur)

(cons (char-set-ref cs cur) ans))))
⇒ (#\G #\T #\a #\c #\e #\h)

;; Equivalently, using a list unfold (from SRFI 1):
(unfold-right end-of-char-set?

(curry char-set-ref cs)
(curry char-set-cursor-next cs)
(char-set-cursor cs))

⇒ (#\G #\T #\a #\c #\e #\h)

(char-set-fold kons knil cs) procedure
This is the fundamental iterator for character sets. Applies the function kons across the character set cs
using initial state value knil. That is, if cs is the empty set, the procedure returns knil. Otherwise, some
element c of cs is chosen; let cs’ be the remaining, unchosen characters. The procedure returns (char-
set-fold kons (kons c knil) cs') .

; CHAR-SET-MEMBERS
(lambda (cs) (char-set-fold cons '() cs))
; CHAR-SET-SIZE
(lambda (cs) (char-set-fold (lambda (c i) (+ i 1)) 0 cs))
; How many vowels in the char set?
(lambda (cs)

(char-set-fold (lambda (c i) (if (vowel? c) (+ i 1) i)) 0 cs))

(char-set-unfold f p g seed) procedure
(char-set-unfold f p g seed base-cs)
This is a fundamental constructor for character sets.
• g is used to generate a series of “seed” values from the initial seed: seed, (g seed), (g2 seed), (g3
seed), …

• p tells us when to stop, when it returns #t when applied to one of these seed values.
• f maps each seed value to a character. These characters are added to a mutable copy of the base
character set base-cs to form the result; base-cs defaults to an empty set.

More precisely, the following definitions hold, ignoring the optional-argument issues:

(define (char-set-unfold p f g seed base-cs)
(char-set-unfold! p f g seed (char-set-copy base-cs)))

(define (char-set-unfold! p f g seed base-cs)
(let lp ((seed seed) (cs base-cs))

(if (p seed) cs ; P says we are done
(lp (g seed) ; Loop on (G SEED)

(char-set-adjoin! cs (f seed)))))) ; Add (F SEED) to set

LispKit Char-Set 12

LispPad Library Reference 2020-12-23

Examples:

(port->char-set p) = (char-set-unfold eof-object?
values
(lambda (x) (read-char p))
(read-char p))

(list->char-set lis) = (char-set-unfold null? car cdr lis)

(char-set-for-each proc cs) procedure
Apply procedure proc to each character in the character set cs. Note that the order in which proc is
applied to the characters in the set is not specified, and may even change from one procedure application
to another.
(char-set-map proc cs) procedure
proc is a proceduremapping characters to characters. It will be applied to all the characters in the character
set cs, and the results will be collected in a newly allocated mutable character set which will be returned
by char-set-map .

LispKit Char-Set 13

6 LispKit Char

Characters are objects that represent printed characters such as letters and digits. In LispKit, characters
are UTF-16 code units.
Character literals are written using the notation #\ character, or #\ character-name, or #\x hex-scalar-
value. Characters written using this #\ notation are self-evaluating, i.e. they do not have to be quoted.
The following standard character names are supported by LispKit:
• #\alarm : U+0007
• #\backspace : U+0008
• #\delete : U+007F
• #\escape : U+001B
• #\newline : the linefeed character U+000A
• #\null : the null character U+0000
• #\return : the return character U+000D
• #\space : the space character U+0020
• #\tab : the tab character U+0009

Here are some examples using the #\ notation:
• #\m : lowercase letter ‘m’
• #\M : uppercase letter ‘M’
• #\(: left parenthesis ‘)’
• #\\ : backslash ‘\’
• #\ : space character ’ ’
• #\x03BB : the lambda character

Case is significant in #\ character, and in #\ character-name, but not in #\x hex-scalar-value. If character
in #\ character is alphabetic, then any character immediately following character cannot be one that
can appear in an identifier. This rule resolves the ambiguous case where, for example, the sequence of
characters #\space could be taken to be either a representation of the space character or a representation
of the character #\s followed by a representation of the symbol pace .
Some of the procedures that operate on characters ignore the difference between upper case and lower
case. The procedures that ignore case have “-ci” (for “case insensitive”) embedded in their names.

6.1 Predicates

(char? obj) procedure
Returns #t if obj is a character, otherwise returns #f .
(char=? char …) procedure
(char<? char …)
(char>? char …)
(char<=? char …)
(char>=? char …)

14

LispPad Library Reference 2020-12-23

These procedures return #t if the results of passing their arguments to char->integer are respectively
equal, monotonically increasing, monotonically decreasing, monotonically non-decreasing, or monotoni-
cally non-increasing. These predicates are transitive.
(char-ci=? char …) procedure
(char-ci<? char …)
(char-ci>? char …)
(char-ci<=? char …)
(char-ci>=? char …)
These procedures are similar to char=? etc., but they treat upper case and lower case letters as the
same. For example, (char-ci=? #\A #\a) returns #t . Specifically, these procedures behave as if
char-foldcase were applied to their arguments before they were compared.
(char-alphabetic? char) procedure
Procedure char-alphabetic? returns #t if its argument is a alphabetic character, otherwise it returns
#f . Note that many Unicode characters are alphabetic but neither upper nor lower case.
(char-numeric? char) procedure
Procedure char-numeric? returns #t if its argument is a numeric character, otherwise it returns #f
.
(char-whitespace? char) procedure
Procedure char-whitespace? returns #t if its argument is a whitespace character, otherwise it returns
#f .
(char-upper-case? char) procedure
Procedure char-upper-case?? returns #t if its argument is an upper-case character, otherwise it
returns #f .
(char-lower-case? char) procedure
Procedure char-lower-case? returns #t if its argument is a lower-case character, otherwise it returns
#f .

6.2 Transforming characters

(char-upcase char) procedure
The char-upcase procedure, given an argument that is the lowercase part of a Unicode casing pair,
returns the uppercase member of the pair, provided that both characters are supported by LispKit. Note
that language-sensitive casing pairs are not used. If the argument is not the lowercase member of such a
pair, it is returned.
(char-downcase char) procedure
The char-downcase procedure, given an argument that is the uppercase part of a Unicode casing pair,
returns the lowercase member of the pair, provided that both characters are supported by LispKit. If the
argument is not the uppercase member of such a pair, it is returned.
(char-foldcase char) procedure
The char-foldcase procedure applies the Unicode simple case-folding algorithm to its argument and
returns the result. Note that language-sensitive folding is not used. If the argument is an uppercase letter,
the result will be either a lowercase letter or the same as the argument if the lowercase letter does not
exist or is not supported by LispKit.

LispKit Char 15

LispPad Library Reference 2020-12-23

6.3 Converting characters

(digit-value char) procedure
Procedure digit-value returns the numeric value (0 to 9) of its argument if it is a numeric digit (that
is, if char-numeric? returns #t), or #f on any other character.

(digit-value #\3) ⇒ 3
(digit-value #\x0EA6) ⇒ #f

(char->integer char) procedure
(integer->char n)
Given a Unicode character, char->integer returns an exact integer between 0 and #xD7FF or between
#xE000 and #x10FFFF which is equal to the Unicode scalar value of that character. Given a non-Unicode
character, it returns an exact integer greater than #x10FFFF.
Given an exact integer that is the value returned by a character when char->integer is applied to it,
integer->char returns that character.

LispKit Char 16

7 LispKit Combinator

Library (lispkit combinator) defines abstractions for combinator-style programming. It provides
means to create and compose functions.
(const c …) procedure
Returns a function accepting any number of arguments and returning the values c … .
(flip f) procedure
Takes a function with two parameters and returns an equivalent function where the two parameters are
swapped.

(define snoc (flip cons))
(snoc (snoc (snoc '() 3) 2) 1) ⇒ (1 2 3)

(negate f) procedure
Returns a function which invokes f and returns the logical negation.

(define gvector-has-elements? (negate gvector-empty?))
(gvector-has-elements? #g(1 2 3)) ⇒ #t

(partial f arg …) procedure
Applies arguments arg … partially to f and returns a new function accepting the remaining arguments.
For a function (f a1 a2 a3 ... an) , (partial f a1 a2) will return a function (lambda (a3 ...
an) (f a1 a2 a3 ... an)) .
(compose f …) procedure
Composes the given functions f … such that ((compose f1 f2 ... fn) x) is equivalent to (f1 (f2
(... (fn x)))) . compose supports functions returning multiple arguments.
(o f …) procedure
Composes the given functions f … such that ((o f1 f2 ... fn) x) is equivalent to (f1 (f2 (... (fn
x)))) . o is a more efficient version of compose which only works if the involved functions only return
a single argument. compose is more general and supports functions returning multiple arguments.
(conjoin f …) procedure
Returns a function invoking all functions f … and combining the results with and . ((conjoin f1 f2
...) x ...) is equivalent to (and (f1 x ...) (f2 x ...) ...) .
(disjoin f …) procedure
Returns a function invoking all functions f … and combining the results with or . ((disjoin f1 f2
...) x ...) is equivalent to (or (f1 x ...) (f2 x ...) ...) .
(list-of? f) procedure
Returns a predicate which takes a list as its argument and returns #t if for every element x of the list (f
x) returns true.
(each f …) procedure
Returns a function which applies the functions f … each individually to its arguments in the given order,
returning the result of the last function application.

17

LispPad Library Reference 2020-12-23

(cut f) syntax
(cut f <…>)
(cut f arg …)
(cut f arg … <…>)
Special form cut transforms an expression (f arg …) into a lambda expression with as many formal
variables as there are slots <> in the expression (f arg …). The body of the resulting lambda expression
calls procedure f with arguments arg … in the order they appear. In case there is a rest symbol <...> at
the end, the resulting procedure is of variable arity, and the body calls f with all arguments provided to
the actual call of the specialized procedure.

(cut cons (+ a 1) <>) ⇒ (lambda (x2) (cons (+ a 1) x2))
(cut list 1 <> 3 <> 5) ⇒ (lambda (x2 x4) (list 1 x2 3 x4 5))
(cut list 1 <> 3 <...>) ⇒ (lambda (x2 . xs) (apply list 1 x2 3 xs))

(cute f) syntax
(cute f <…>)
(cute f arg …)
(cute f arg … <…>)
Special form cute is similar to cut , except that it first binds new variables to the result of evaluating the
non-slot expressions (in an unspecific order) and then substituting the variables for the non-slot expres-
sions. In effect, cut evaluates non-slot expressions at the time the resulting procedure is called, whereas
cute evaluates the non-slot expressions at the time the procedure is constructed.

(cute cons (+ a 1) <>)
⇒ (let ((a1 (+ a 1))) (lambda (x2) (cons a1 x2)))

(Y f) procedure
Y combinator for computing a fixed point of a function f. This is a value that is mapped to itself.

; factorial function
(define fac

(Y (lambda (r)
(lambda (x) (if (< x 2) 1 (* x (r (- x 1))))))))

; fibonacci numbers
(define fib

(Y (lambda (f)
(lambda (x)
(if (< x 2) x (+ (f (- x 1)) (f (- x 2))))))))

LispKit Combinator 18

8 LispKit Comparator

Comparators bundle a type test predicate, an equality predicate, an optional ordering predicate, and
an optional hash function into a single object. By packaging these procedures together, they can be
treated as a single item for use in the implementation of data structures that typically rely on a consistent
combination of such functions.
Library (lispkit comparator) implements a large part of the API of SRFI 128 and thus, can be used
as a drop-in replacement for the core functionality of library (srfi 128) . A few procedures and objects
from SRFI 162 were adopted as well.

8.1 Comparator objects

Comparators are objects of a distinct type which bundle procedures together that are useful for comparing
two objects in a total order. It is an error, if any of the procedures have side effects. There are four
procedures in the bundle:
• The type test predicate returns #t if its argument has the correct type to be passed as an argument
to the other three procedures, and #f otherwise.

• The equality predicate returns #t if the two objects are the same in the sense of the comparator,
and #f otherwise. It is the programmer’s responsibility to ensure that it is reflexive, symmetric,
transitive, and can handle any arguments that satisfy the type test predicate.

• The ordering predicate returns #t if the first object precedes the second in a total order, and #f
otherwise. Note that if it is true, the equality predicate must be false. It is the programmer’s respon-
sibility to ensure that it is irreflexive, antisymmetric, transitive, and can handle any arguments that
satisfy the type test predicate.

• The hash function takes an object and returns an exact non-negative integer. It is the programmer’s
responsibility to ensure that it can handle any argument that satisfies the type test predicate, and
that it returns the same value on two objects if the equality predicate says they are the same (but
not necessarily the converse).

It is also the programmer’s responsibility to ensure that all four procedures provide the same result when-
ever they are applied to the same objects in the sense of eqv? , unless the objects have been mutated
since the last invocation.
Comparator objects are not applicable to circular structure, or to objects containing any of these. Attempts
to pass any such objects to any procedure defined here, or to any procedure that is part of a comparator
defined here, has undefined behavior.

8.2 Predicates

(comparator? obj) procedure
Returns #t if obj is a comparator, and #f otherwise.
(comparator-ordered? cmp) procedure
Returns #t if comparator cmp has a supplied ordering predicate, and #f otherwise.

19

LispPad Library Reference 2020-12-23

(comparator-hashable? cmp) procedure
Returns #t if comparator cmp has a supplied hash function, and #f otherwise.

8.3 Constructors

(make-comparator test equality ordering hash) procedure
Returns a comparator which bundles the test, equality, ordering, and hash procedures provided as argu-
ments to make-comparator . If ordering or hash is #f , a procedure is provided that signals an error on
application. The predicates comparator-ordered? and comparator-hashable? will return #f in
the respective cases.
Here are calls on make-comparator that will return useful comparators for standard Scheme types:
• (make-comparator boolean? boolean=? (lambda (x y) (and (not x) y)) boolean-hash)
will return a comparator for booleans, expressing the ordering #f < #t and the standard hash
function for booleans

• (make-comparator real? = < (lambda (x) (exact (abs x)))) will return a comparator
expressing the natural ordering of real numbers and a plausible hash function

• (make-comparator string? string=? string<? string-hash) will return a comparator ex-
pressing the implementation’s ordering of strings and the standard hash function

• (make-comparator string? string-ci=? string-ci<? string-ci-hash) will return a com-
parator expressing the implementation’s case-insensitive ordering of strings and the standard case-
insensitive hash function

(make-pair-comparator car-comparator cdr-comparator) procedure
This procedure returns comparators whose functions behave as follows:
• The type test returns #t if its argument is a pair, if the car satisfies the type test predicate of
car-comparator, and the cdr satisfies the type test predicate of cdr-comparator

• The equality function returns #t if the cars are equal according to car-comparator and the cdrs are
equal according to cdr-comparator, and #f otherwise. The ordering function first compares the cars
of its pairs using the equality predicate of car-comparator. If they are not equal, then the ordering
predicate of car-comparator is applied to the cars and its value is returned. Otherwise, the predicate
compares the cdrs using the equality predicate of cdr-comparator. If they are not equal, then the
ordering predicate of cdr-comparator is applied to the cdrs and its value is returned

• The hash function computes the hash values of the car and the cdr using the hash functions of car-
comparator and cdr-comparator respectively and then hashes them together in an implementation-
defined way

(make-list-comparator element-comparator type-test empty? head tail) procedure
This procedure returns comparators whose functions behave as follows:
• The type test returns #t if its argument satisfies type-test and the elements satisfy the type test
predicate of element-comparator

• The total order defined by the equality and ordering functions is lexicographic. It is defined as
follows:
– The empty sequence, as determined by calling empty?, compares equal to itself
– The empty sequence compares less than any non-empty sequence
– Two non-empty sequences are compared by calling the head procedure on each. If the heads are
not equal when compared using element-comparator, the result is the result of that comparison.
Otherwise, the results of calling the tail procedure are compared recursively.

• The hash function computes the hash values of the elements using the hash function of element-
comparator and then hashes them together in an implementation-defined way

LispKit Comparator 20

LispPad Library Reference 2020-12-23

(make-vector-comparator element-comparator type-test length ref) procedure
This procedure returns comparators whose functions behave as follows:
• The type test returns #t if its argument satisfies type-test and the elements satisfy the type test
predicate of element-comparator.

• The equality predicate returns #t if both of the following tests are satisfied in order: the lengths
of the vectors are the same in the sense of = , and the elements of the vectors are the same in the
sense of the equality predicate of element-comparator.

• The ordering predicate returns #t if the results of applying length to the first vector is less than
the result of applying length to the second vector. If the lengths are equal, then the elements are
examined pairwise using the ordering predicate of element-comparator. If any pair of elements
returns #t , then that is the result of the list comparator’s ordering predicate; otherwise the result
is #f

• The hash function computes the hash values of the elements using the hash function of element-
comparator and then hashes them together in an implementation-defined way

Here is an example, which returns a comparator for byte vectors:

(make-vector-comparator
(make-comparator exact-integer? = < number-hash)
bytevector?
bytevector-length
bytevector-u8-ref)

8.4 Default comparators

eq-comparator object
eqv-comparator
equal-comparator
These objects implement comparators whose functions behave as follows:
• The type test returns #t in all cases
• The equality functions are eq? , eqv? , and equal? respectively
• The ordering function is implementation-defined, except that it must conform to the rules for order-
ing functions. It may signal an error instead.

• The hash functions are eq-hash , eqv-hash , and equal-hash respectively
boolean-comparator object
boolean-comparator is defined as follows:

(make-comparator boolean? boolean=? (lambda (x y) (and (not x) y)) boolean-hash))

real-comparator object
real-comparator is defined as follows:

(make-comparator real? = < number-hash))

char-comparator object
char-comparator is defined as follows:

LispKit Comparator 21

LispPad Library Reference 2020-12-23

(make-comparator char? char=? char<? char-hash))

char-ci-comparator object
char-ci-comparator is defined as follows:

(make-comparator char? char-ci=? char-ci<? char-ci-hash))

string-comparator object
string-comparator is defined as follows:

(make-comparator string? string=? string<? string-hash))

string-ci-comparator object
string-ci-comparator is defined as follows:

(make-comparator string? string-ci=? string-ci<? string-ci-hash))

8.5 Accessors and invokers

(comparator-type-test-predicate cmp) procedure
Returns the type test predicate of comparator cmp.
(comparator-equality-predicate cmp) procedure
Returns the equality predicate of comparator cmp.
(comparator-ordering-predicate cmp) procedure
Returns the ordering predicate of comparator cmp.
(comparator-hash-function cmp) procedure
Returns the hash function of comparator cmp.
(comparator-test-type cmp obj) procedure
Invokes the type test predicate of comparator cmp on obj and returns what it returns. This procedure
is convenient than comparator-type-test-predicate , but less efficient when the predicate is called
repeatedly.
(comparator-check-type cmp obj) procedure
Invokes the type test predicate of comparator cmp on obj and returns #t if it returns #t , but signals an
error otherwise. This procedure is more convenient than comparator-type-test-predicate , but less
efficient when the predicate is called repeatedly.
(comparator-hash cmp obj) procedure
Invokes the hash function of comparator cmp on obj and returns what it returns. This procedure is more
convenient than comparator-hash-function, but less efficient when the function is called repeatedly.

8.6 Comparison predicates

(=? cmp object1 object2 object3 …) procedure
(<? cmp object1 object2 object3 …)
(>? cmp object1 object2 object3 …)

LispKit Comparator 22

LispPad Library Reference 2020-12-23

(<=? cmp object1 object2 object3 …)
(>=? cmp object1 object2 object3 …)
These procedures are analogous to the number, character, and string comparison predicates of Scheme.
They allow the convenient use of comparators to handle variable data types.
These procedures apply the equality and ordering predicates of comparator cmp to the objects as follows.
If the specified relation returns #t for all objecti and objectjwhere n is the number of objects and 1 <= i <
j <= n, then the procedures return #t , but otherwise #f . Because the relations are transitive, it suffices
to compare each object with its successor. The order in which the values are compared is unspecified.
(comparator-max cmp obj1 obj2 …) procedure
(comparator-min cmp obj1 obj2 …)
(comparator-max-in-list cmp list)
(comparator-min-in-list cmp list)
These procedures are analogous to min and max respectively, but may be applied to any orderable
objects, not just to real numbers. They apply the ordering procedure of comparator cmp to the objects
obj1 … to find and return a minimal or maximal object. The order in which the values are compared is
unspecified. If two objects are equal in the sense of the comparator cmp, either may be returned.
The -in-list versions of the procedures accept a single list argument.

8.7 Syntax

(comparator-if<=> obj1 obj2 less-than equal-to greater-than) syntax
(comparator-if<=> cmp obj1 obj2 less-than equal-to greater-than)
It is an error unless comparator cmp evaluates to a comparator and obj1 and obj2 evaluate to objects that
the comparator can handle. If the ordering predicate returns #t when applied to the values of obj1 and
obj2 in that order, then expression less-than is evaluated and its value is returned. If the equality predicate
returns #t when applied in the same way, then expression equal-to is evaluated and its value is returned.
If neither returns #t , expression greater-than is evaluated and its value is returned.
If cmp is omitted, equal-comparator is used as a default.
(if<=> obj1 obj2 less-than equal-to greater-than) syntax

This special form is equivalent to (comparator-if<=> obj1 obj2 less-than equal-to greater-
than) , i.e. it uses the predicates provided by equal-comparator to determine whether expression
less-than, equal-to, or greater-than gets evaluated and its value returned.

This documentation was derived from the SRFI 128 and the SRFI 162 specifications by John Cowan.

LispKit Comparator 23

https://srfi.schemers.org/srfi-128/srfi-128.html
https://srfi.schemers.org/srfi-162/srfi-162.html

9 LispKit Control

9.1 Sequencing

(begin expr … exprn) syntax
begin evaluates expr, …, exprn sequentially from left to right. The values of the last expression exprn
are returned. This special form is typically used to sequence side effects such as assignments or input and
output.

9.2 Conditionals

(if test consequent) syntax
(if test consequent alternate)
An if expression is evaluated as follows: first, expression test is evaluated. If it yields a true value, then
expression consequent is evaluated and its values are returned. Otherwise, alternate is evaluated and its
values are returned. If expression test yields a false value and no alternate expression is specified, then
the result of the expression is void.

(if (> 3 2) 'yes 'no) ⇒ yes
(if (> 2 3) 'yes 'no) ⇒ yes
(if (> 3 2) (- 3 2) (+ 3 2)) ⇒ 1

(when test consequent …) syntax
The test expression is evaluated, and if it evaluates to a true value, the expressions consequent … are
evaluated in order. The result of the when expression is the value to which the last consequent expression
evaluates or void if test evaluates to false.

(when (= 1 1.0)
(display "1")
(display "2")) ⇒ (void), prints: 12

(unless test alternate …) syntax
The test is evaluated, and if it evaluates to false, the expressions alternate … are evaluated in order. The
result of the unless expression is the value to which the last consequent expression evaluates or void if
test evaluates to a true value.

(unless (= 1 1.0)
(display "1")
(display "2")) ⇒ (void), prints nothing

(cond clause1 clause2 …) syntax
Clauses like clause1 and clause2 take one of two forms, either
• (_test expr1 ..._) , or

24

LispPad Library Reference 2020-12-23

• (_test_ => _expr_)

The last clause in a cond expression can be an “else clause”, which has the form
• (else _expr1 expr2 ..._)

A cond expression is evaluated by evaluating the test expressions of successive clauses in order until
one of them evaluates to a true value. When a test expression evaluates to a true value, the remaining
expressions in its clause are evaluated in order, and the results of the last expression are returned as the
results of the entire cond expression.
If the selected clause contains only the test and no expressions, then the value of the test expression is
returned as the result of the cond expression. If the selected clause uses the => alternate form, then
the expression is evaluated. It is an error if its value is not a procedure that accepts one argument. This
procedure is then called on the value of the test and the values returned by this procedure are returned
by the cond expression.
If all tests evaluate to #f , and there is no else clause, then the result of the conditional expression is
void. If there is an else clause, then its expressions are evaluated in order, and the values of the last one
are returned.

(cond ((> 3 2) ’greater)
((< 3 2) ’less)) ⇒ greater

(cond ((> 3 3) ’greater)
((< 3 3) ’less)
(else ’equal)) ⇒ equal

(cond ((assv ’b ’((a 1) (b 2))) => cadr)
(else #f)) ⇒ 2

(case key clause1 clause2 …) syntax
key can be any expression. Each clause clause1, clause2, … has the form:
• ((_datum1 ..._) _expr1 expr2 ..._)

where each datum is an external representation of some object. It is an error if any of the datums are the
same anywhere in the expression. Alternatively, a clause can be of the form:
• ((_datum1 ..._) => _expr_)

The last clause in a case expression can be an “else clause”, which has one of the following forms:
• (else _expr1 expr2 ..._) , or
• (else => _expr_)

A case expression is evaluated as follows. Expression key is evaluated and its result is compared against
each datum. If the result of evaluating key is the same, in the sense of eqv? , to a datum, then the
expressions in the corresponding clause are evaluated in order and the results of the last expression in the
clause are returned as the results of the case expression.
If the result of evaluating key is different from every datum, then if there is an else clause, its expressions
are evaluated and the results of the last are the results of the case expression. Otherwise, the result of
the case expression is void.
If the selected clause or else clause uses the => alternate form, then the expression is evaluated. It
is an error, if its value is not a procedure accepting one argument. This procedure is then called on the
value of the key and the values returned by this procedure are returned by the case expression.

LispKit Control 25

LispPad Library Reference 2020-12-23

(case (* 2 3)
((2 3 5 7) ’prime)
((1 4 6 8 9) ’composite)) ⇒ composite

(case (car ’(c d))
((a) ’a)
((b) ’b)) ⇒ (void)

(case (car ’(c d))
((a e i o u) ’vowel)
((w y) ’semivowel)
(else => (lambda (x) x))) ⇒ c

9.3 Local bindings

The binding constructs let , let* , letrec , letrec* , let-values , and let*-values give Scheme
a block structure. The syntax of the first four constructs is identical, but they differ in the regions they
establish for their variable bindings. In a let expression, the initial values are computed before any of the
variables become bound. In a let* expression, the bindings and evaluations are performed sequentially.
While in letrec and letrec* expressions, all the bindings are in effect while their initial values are
being computed, thus allowing mutually recursive definitions. The let-values and let*-values
constructs are analogous to let and let* respectively, but are designed to handle multiple-valued
expressions, binding different identifiers to the returned values.
(let bindings body) syntax
bindings has the form ((variable init) ...) , where each init is an expression, and body is a sequence
of zero or more definitions followed by a sequence of one or more expressions. It is an error for variable
to appear more than once in the list of variables being bound.
All init expressions are evaluated in the current environment, the variables are bound to fresh locations
holding the results, the body is evaluated in the extended environment, and the values of the last expres-
sion of body are returned. Each binding of a variable has body as its scope.

(let ((x 2) (y 3))
(* x y)) ⇒ 6

(let ((x 2) (y 3))
(let ((x 7)

(z (+ x y)))
(* z x))) ⇒ 35

(let* bindings body) syntax
bindings has the form ((variable init) ...) , where each init is an expression, and body is a sequence
of zero or more definitions followed by a sequence of one or more expressions.
The let* binding construct is similar to let, but the bindings are performed sequentially from left to
right, and the region of a binding indicated by (variable init) is that part of the let* expression to
the right of the binding. Thus, the second binding is done in an environment in which the first binding is
visible, and so on. The variables need not be distinct.

(let ((x 2) (y 3))
(let* ((x 7)

(z (+ x y)))
(* z x))) ⇒ 70

(letrec bindings body) syntax
bindings has the form ((variable init) ...) , where each init is an expression, and body is a sequence

LispKit Control 26

LispPad Library Reference 2020-12-23

of zero or more definitions followed by a sequence of one or more expressions. It is an error for variable
to appear more than once in the list of variables being bound.
The variables are bound to fresh locations holding unspecified values, the init expressions are evaluated in
the resulting environment, each variable is assigned to the result of the corresponding init expression, the
body is evaluated in the resulting environment, and the values of the last expression in body are returned.
Each binding of a variable has the entire letrec expression as its scope, making it possible to define
mutually recursive procedures.

(letrec ((even? (lambda (n)
(if (zero? n) #t (odd? (- n 1)))))

(odd? (lambda (n)
(if (zero? n) #f (even? (- n 1))))))

(even? 88)) ⇒ #t

One restriction of letrec is very important: if it is not possible to evaluate each init expression without
assigning or referring to the value of any variable, it is an error. The restriction is necessary because
letrec is defined in terms of a procedure call where a lambda expression binds the variables to the
values of the init expressions. In the most common uses of letrec , all the init expressions are lambda
expressions and the restriction is satisfied automatically.
(letrec* bindings body) syntax
bindings has the form ((variable init) ...) , where each init is an expression, and body is a sequence
of zero or more definitions followed by a sequence of one or more expressions. It is an error for variable
to appear more than once in the list of variables being bound.
The variables are bound to fresh locations, each variable is assigned in left-to-right order to the result of
evaluating the corresponding init expression, the body is evaluated in the resulting environment, and the
values of the last expression in body are returned. Despite the left-to-right evaluation and assignment
order, each binding of a variable has the entire letrec* expression as its region, making it possible
to define mutually recursive procedures. If it is not possible to evaluate each init expression without
assigning or referring to the value of the corresponding variable or the variable of any of the bindings that
follow it in bindings, it is an error. Another restriction is that it is an error to invoke the continuation of
an init expression more than once.

(letrec* ((p (lambda (x)
(+ 1 (q (- x 1)))))

(q (lambda (y)
(if (zero? y) 0 (+ 1 (p (- y 1))))))

(x (p 5))
(y x))

y) ⇒ 5

(let-values bindings body) syntax
bindings has the form ((formals init) ...) , where each formals is a list of variables, init is an expression,
and body is zero or more definitions followed by a sequence of one or more expressions. It is an error for
a variable to appear more than once in formals.
The init expressions are evaluated in the current environment as if by invoking call-with-values , and
the variables occurring in list formals are bound to fresh locations holding the values returned by the
init expressions, where the formals are matched to the return values in the same way that the formals
in a lambda expression are matched to the arguments in a procedure call. Then, body is evaluated in
the extended environment, and the values of the last expression of body are returned. Each binding of a
variable has body as its scope.
It is an error if the variables in list formals do not match the number of values returned by the correspond-
ing init expression.

LispKit Control 27

LispPad Library Reference 2020-12-23

(let-values (((root rem) (exact-integer-sqrt 32)))
(* root rem)) ⇒ 35

(let*-values bindings body) syntax
bindings has the form ((formals init) ...) , where each formals is a list of variables, init is an expression,
and body is zero or more definitions followed by a sequence of one or more expressions. It is an error for
a variable to appear more than once.
The let*-values construct is similar to let-values , but the init expressions are evaluated and bind-
ings created sequentially from left to right, with the region of the bindings of each variable in formals
including the init expressions to its right as well as body. Thus the second init expression is evaluated in
an environment in which the first set of bindings is visible and initialized, and so on.

(let ((a 'a) (b 'b) (x 'x) (y 'y))
(let*-values (((a b) (values x y))

((x y) (values a b)))
(list a b x y))) ⇒ (x y x y)

(letrec-values bindings body) syntax
bindings has the form ((formals init) ...) , where each formals is a list of variables, init is an expression,
and body is zero or more definitions followed by a sequence of one or more expressions. It is an error for
a variable to appear more than once.
First, the variables of the formals lists are bound to fresh locations holding unspecified values. Then, the
init expressions are evaluated in the current environment as if by invoking call-with-values , where
the formals are matched to the return values in the same way that the formals in a lambda expression are
matched to the arguments in a procedure call. Finally, body is evaluated in the resulting environment,
and the values of the last expression in body are returned. Each binding of a variable has the entire
letrec-values expression as its scope, making it possible to define mutually recursive procedures.

(letrec-values (((a) (lambda (n)
(if (zero? n) #t (odd? (- n 1)))))

((b c) (values
(lambda (n)
(if (zero? n) #f (even? (- n 1))))

a)))
(list (a 1972) (b 1972) (c 1972))) ⇒ (#t #f #t)

(let-optionals args ((var default) …) body …) syntax
This binding construct can be used to handle optional arguments of procedures. args refers to the rest
parameter list of a procedure or lambda expression. let-optionals binds the variables var, … to the
arguments available in args, or to default, … if there are not enough arguments provided in args. Variables
are bound in parallel, i.e. all default expressions are evaluated in the current environment in which the
new variables are not bound yet. Then, body is evaluated in the extended environment including all
variable definitions of let-optionals , and the values of the last expression of body are returned. Each
binding of a variable has body as its scope.

(let-optionals '("one" "two")
((one 1) (two 2) (three 3))

(list one two three)) ⇒ ("one" "two" 3)

(let*-optionals args ((var default) …) body …) syntax
The let*-optionals construct is similar to let-optionals , but the default expressions are evaluated

LispKit Control 28

LispPad Library Reference 2020-12-23

and bindings created sequentially from left to right, with the scope of the bindings of each variable includ-
ing the default expressions to its right as well as body. Thus the second default expression is evaluated in
an environment in which the first binding is visible and initialized, and so on.

(let*-optionals '(10 20)
((one 1) (two (+ one 1)) (three (+ two 1)))

(list one two three)) ⇒ (10 20 21)

(let-keywords args (binding …) body …) syntax
binding has one of two forms:
• (var default) , and
• (var keyword default)

where var is a variable, keyword is a symbol, and default is an expression. It is an error for a variable var
to appear more than once.
This binding construct can be used to handle keyword arguments of procedures. args refers to the rest
parameter list of a procedure or lambda expression. let-keywords binds the variables var, … by name,
i.e. by searching in args for the keyword argument. If an optional keyword is provided, it is used as the
name of the keyword to search for, otherwise, var is used, appending : . If the keyword is not found in
args, var is bound to default.
Variables are bound in parallel, i.e. all default expressions are evaluated in the current environment in
which the new variables are not bound yet. Then, body is evaluated in the extended environment including
all variable definitions of let-keywords , and the values of the last expression of body are returned. Each
binding of a variable has body as its scope.

(define (make-person . args)
(let-keywords args ((name "J. Doe")

(age 0)
(occupation job: 'unknown))

(list name age occupation)))
(make-person) ⇒ ("J. Doe" 0 unknown)
(make-person 'name: "M. Zenger") ⇒ ("M. Zenger" 0 unknown)
(make-person 'age: 31 'job: 'eng) ⇒ ("J. Doe" 31 eng)

(let*-keywords args (binding …) body …) syntax
binding has one of two forms:
• (var default) , and
• (var keyword default)

where var is a variable, keyword is a symbol, and default is an expression. It is an error for a variable var
to appear more than once.
The let*-keywords construct is similar to let-keywords , but the default expressions are evaluated and
bindings created sequentially from left to right, with the scope of the bindings of each variable including
the default expressions to its right as well as body. Thus the second default expression is evaluated in an
environment in which the first binding is visible and initialized, and so on.

9.4 Local syntax bindings

The let-syntax and letrec-syntax binding constructs are analogous to let and letrec , but
they bind syntactic keywords to macro transformers instead of binding variables to locations that contain
values. Syntactic keywords can also be bound globally or locally with define-syntax .

LispKit Control 29

LispPad Library Reference 2020-12-23

(let-syntax bindings body) syntax
bindings has the form ((keyword transformer) ...) . Each keyword is an identifier, each transformer is
an instance of syntax-rules , and body is a sequence of one or more definitions followed by one or more
expressions. It is an error for a keyword to appear more than once in the list of keywords being bound.
body is expanded in the syntactic environment obtained by extending the syntactic environment of the
let-syntax expression with macros whose keywords are the keyword symbols bound to the specified
transformers. Each binding of a keyword has body as its scope.

(let-syntax
((given-that (syntax-rules ()

((_ test stmt1 stmt2 ...)
(if test

(begin stmt1 stmt2 ...))))))
(let ((if #t))
(given-that if (set! if ’now))
if)) ⇒ now

(let ((x ’outer))
(let-syntax ((m (syntax-rules () ((m) x))))

(let ((x ’inner))
(m)))) ⇒ outer

(letrec-syntax bindings body) syntax
bindings has the form ((keyword transformer) ...) . Each keyword is an identifier, each transformer is
an instance of syntax-rules , and body is a sequence of one or more definitions followed by one or more
expressions. It is an error for a keyword to appear more than once in the list of keywords being bound.
body is expanded in the syntactic environment obtained by extending the syntactic environment of the
letrec-syntax expression with macros whose keywords are the keywords, bound to the specified trans-
formers. Each binding of a keyword symbol has the transformer as well as the body within its scope, so
the transformers can transcribe expressions into uses of the macros introduced by the letrec-syntax
expression.

(letrec-syntax
((my-or (syntax-rules ()

((my-or) #f)
((my-or e) e)
((my-or e1 e2 ...)

(let ((temp e1))
(if temp temp (my-or e2 ...)))))))

(let ((x #f)
(y 7)
(temp 8)
(let odd?)
(if even?))

(my-or x (let temp) (if y) y))) ⇒ 7

9.5 Iteration

(do ((variable init step) …) syntax
(test res …)

command …)
A do expression is an iteration construct. It specifies a set of variables to be bound, how they are to be
initialized at the start, and how they are to be updated on each iteration. When a termination condition
test is met (i.e. it evaluates to #t), the loop exits after evaluating the res expressions.

LispKit Control 30

LispPad Library Reference 2020-12-23

A do expression is evaluated as follows: The init expressions are evaluated, the variables are bound to
fresh locations, the results of the init expressions are stored in the bindings of the variables, and then the
iteration phase begins.
Each iteration begins by evaluating test. If the result is false, then the command expressions are evaluated
in order, the step expressions are evaluated in some unspecified order, the variables are bound to fresh
locations, the results of the step expressions are stored in the bindings of the variables, and the next
iteration begins.
If test evaluates to #t , then the res expressions are evaluated from left to right and the values of the last
res expression are returned. If no res expressions are present, then the do expression evaluates to void.
The scope of the binding of a variable consists of the entire do expression except for the init expressions.
It is an error for a variable to appear more than once in the list of do variables. A step can be omitted,
in which case the effect is the same as if (variable init variable) had been written instead of (variable
init) .

(do ((vec (make-vector 5))
(i 0 (+ i 1)))
((= i 5) vec)

(vector-set! vec i i)) ⇒ #(0 1 2 3 4)

(let ((x '(1 3 5 7 9)))
(do ((x x (cdr x))

(sum 0 (+ sum (car x))))
((null? x) sum))) ⇒ 25

LispKit Control 31

10 LispKit Core

10.1 Basic primitives

(procedure? obj) procedure
Returns #t if obj is a procedure. Otherwise, it returns #f .
(eval expr env) procedure
If expr is an expression, it is evaluated in the specified environment and its values are returned. If it is a
definition, the specified identifiers are defined in the specified environment, provided the environment is
not immutable.
(apply proc arg1 … args) procedure
The apply procedure calls proc with the elements of the list (append (list arg1 ...) args) as the
actual arguments.
(equal? obj1 obj2) procedure
The equal? procedure, when applied to pairs, vectors, strings and bytevectors, recursively compares
them, returning #t when the unfoldings of its arguments into possibly infinite trees are equal (in the
sense of equal?) as ordered trees, and #f otherwise. It returns the same as eqv? when applied to
booleans, symbols, numbers, characters, ports, procedures, and the empty list. If two objects are eqv?
, they must be equal? as well. In all other cases, equal? may return either #t or #f . Even if its
arguments are circular data structures, equal? must always terminate. As a rule of thumb, objects are
generally equal? if they print the same.
(eqv? obj1 obj2) procedure
The eqv? procedure defines a useful equivalence relation on objects. It returns #t if obj1 and obj2 are
regarded as the same object.
The eqv? procedure returns #t if:
• obj1 and obj2 are both #t or both #f
• obj1 and obj2 are both symbols and are the same symbol according to the symbol=? procedure
• obj1 and obj2 are both exact numbers and are numerically equal in the sense of =
• obj1 and obj2 are both inexact numbers such that they are numerically equal in the sense of = , and
they yield the same results in the sense of eqv? when passed as arguments to any other procedure
that can be defined as a finite composition of Scheme’s standard arithmetic procedures, provided it
does not result in a NaN value

• obj1 and obj2 are both characters and are the same character according to the char=? procedure
• obj1 and obj2 are both the empty list
• obj1 and obj2 are both a pair and car and cdr of both pairs are the same in the sense of eqv?
• obj1 and obj2 are ports, vectors, hashtables, bytevectors, records, or strings that denote the same
location in the store

• obj1 and obj2 are procedures whose location tags are equal
The eqv? procedure returns #f if:
• obj1 and obj2 are of different types
• one of obj1 and obj2 is #t but the other is #f

32

LispPad Library Reference 2020-12-23

• obj1 and obj2 are symbols but are not the same symbol according to the symbol=? procedure
• one of obj1 and obj2 is an exact number but the other is an inexact number
• obj1 and obj2 are both exact numbers and are numerically unequal in the sense of =
• obj1 and obj2 are both inexact numbers such that either they are numerically unequal in the sense
of = , or they do not yield the same results in the sense of eqv? when passed as arguments to
any other procedure that can be defined as a finite composition of Scheme’s standard arithmetic
procedures, provided it does not result in a NaN value. As an exception, the behavior of eqv? is
unspecified when both obj1 and obj2 are NaN.

• obj1 and obj2 are characters for which the char=? procedure returns #f
• one of obj1 and obj2 is the empty list but the other is not
• obj1 and obj2 are both a pair but either car or cdr of both pairs are not the same in the sense of

eqv?
• obj1 and obj2 are ports, vectors, hashtables, bytevectors, records, or strings that denote distinct
locations

• obj1 and obj2 are procedures that would behave differently (i.e. return different values or have
different side effects) for some arguments

(eq? obj1 obj2) procedure
The eq? procedure is similar to eqv? except that in some cases it is capable of discerning distinctions
finer than those detectable by eqv? . It always returns #f when eqv? also would, but returns #f in
some cases where eqv? would return #t . On symbols, booleans, the empty list, pairs, and records, and
also on non-empty strings, vectors, and bytevectors, eq? and eqv? are guaranteed to have the same
behavior.
(quote datum) syntax
(quote datum) evaluates to datum. datum can be any external representation of a LispKit object. This
notation is used to include literal constants in LispKit code. (quote datum) can be abbreviated as
’datum. The two notations are equivalent in all respects. Numerical constants, string constants, character
constants, vector constants, bytevector constants, and boolean constants evaluate to themselves. They
need not be quoted.
(quasiquote template) syntax
Quasiquote expressions are useful for constructing a list or vector structure when some but not all of the
desired structure is known in advance. If no commas appear within template, the result of evaluating
(quasiquote template) is equivalent to the result of evaluating (quote template) . If a comma
appears within template, however, the expression following the comma is evaluated (“unquoted”) and its
result is inserted into the structure instead of the comma and the expression. If a comma appears followed
without intervening whitespace by @ , then it is an error if the following expression does not evaluate to
a list; the opening and closing parentheses of the list are then “stripped away” and the elements of the list
are inserted in place of the ,@ expression sequence. ,@ normally appears only within a list or vector.
Quasiquote expressions can be nested. Substitutions are made only for unquoted components appearing
at the same nesting level as the outermost quasiquote. The nesting level increases by one inside each
successive quasiquotation, and decreases by one inside each unquotation. Comma corresponds to form
unquote , ,@ corresponds to form unquote-splicing .
(lambda (arg1 …) expr …) syntax
(lambda (arg1 … . rest) expr …)
(lambda rest expr …)
A lambda expression evaluates to a procedure. The environment in effect when the lambda expression was
evaluated is remembered as part of the procedure. When the procedure is later called with some actual
arguments, the environment in which the lambda expression was evaluated will be extended by binding
the variables in the formal argument list arg1… to fresh locations, and the corresponding actual argument
values will be stored in those locations. Next, the expressions in the body of the lambda expression will

LispKit Core 33

LispPad Library Reference 2020-12-23

be evaluated sequentially in the extended environment. The results of the last expression in the body will
be returned as the results of the procedure call.
(case-lambda (formals expr …) …) syntax
A case-lambda expression evaluates to a procedure that accepts a variable number of arguments and is
lexically scoped in the same manner as a procedure resulting from a lambda expression. When the proce-
dure is called, the first clause for which the arguments agree with formals is selected, where agreement
is specified as for formals of a lambda expression. The variables of formals are bound to fresh locations,
the values of the arguments are stored in those locations, the expressions in the body are evaluated in the
extended environment, and the results of the last expression in the body is returned as the results of the
procedure call. It is an error for the arguments not to agree with formals of any clause.
Here is an example showing how to use case-lambda for defining a simple accumulator:

(define (make-accumulator n)
(case-lambda

(() n)
((m) (set! n (+ n m)) n)))

(define a (make-accumulator 1))
(a) ⇒ 1
(a 5) ⇒ 6
(a) ⇒ 6

(thunk expr …) syntax
Returns a procedure accepting no arguments and evaluating expr …, returning the result of the last ex-
pression being evaluated as the result of a procedure call. (thunk expr ...) is equivalent to (lambda
() expr ...) .
(thunk* expr …) syntax
Returns a procedure accepting an arbitrary amount of arguments and evaluating expr …, returning the
result of the last expression being evaluated as the result of a procedure call. (thunk* expr ...) is
equivalent to (lambda args expr ...) .

10.2 Definition primitives

(define var expr) syntax
(define (f arg …) expr)
At the outermost level of a program, a definition (define var expr) has essentially the same effect as
the assignment expression (set! var expr) if variable var is bound to a non-syntax value. However,
if var is not bound, or is a syntactic keyword, then the definition will bind var to a new location before
performing the assignment, whereas it would be an error to perform a set! on an unbound variable.
The form (define (f arg …) expr) defines a function f with arguments arg … and body expr. It is
equivalent to (define f (lambda (arg …) expr)) .
(define-values (var …) expr) syntax
define-values creates multiple definitions var… from a single expression expr returningmultiple values.
It is allowed wherever define is allowed.
expr is evaluated, and the variables var … are bound to the return values in the same way that the formal
arguments in a lambda expression are matched to the actual arguments in a procedure call.
It is an error if a variable var appears more than once in var ….

LispKit Core 34

LispPad Library Reference 2020-12-23

(define-values (x y) (integer-sqrt 17))
(list x y) ⇒ (4 1)

(define-syntax keyword transformer) syntax
Syntax definitions have the form (define-syntax keyword transformer) . keyword is an identifier, and
transformer is an instance of syntax-rules . Like variable definitions, syntax definitions can appear at
the outermost level or nested within a body.
If the define-syntax occurs at the outermost level, then the global syntactic environment is extended
by binding the keyword to the specified transformer, but previous expansions of any global binding for
keyword remain unchanged. Otherwise, it is an internal syntax definition, and is local to the “body” in
which it is defined. Any use of a syntax keyword before its corresponding definition is an error.
Macros can expand into definitions in any context that permits them. However, it is an error for a definition
to define an identifier whose binding has to be known in order to determine the meaning of the definition
itself, or of any preceding definition that belongs to the same group of internal definitions. Similarly, it
is an error for an internal definition to define an identifier whose binding has to be known in order to
determine the boundary between the internal definitions and the expressions of the body it belongs to.
Here is an example defining syntax for while loops. while evaluates the body of the loop as long as
the predicate is true.

(define-syntax while
(syntax-rules ()

((_ pred body ...)
(let loop () (when pred body ... (loop))))))

(syntax-rules (literal …) rule …) syntax
(syntax-rules ellipsis (literal …) rule …)
A transformer spec has one of the two forms listed above. It is an error if any of the literal …, or the ellipsis
symbol in the second form, is not an identifier. It is also an error if syntax rules rule are not of the form
• (pattern template) .

The pattern in a rule is a list pattern whose first element is an identifier. In general, a pattern is either an
identifier, a constant, or one of the following:
• (pattern …)
• (pattern pattern … . pattern)
• (pattern … pattern ellipsis pattern …) (pattern … pattern ellipsis pattern … . pattern)
• #(pattern …)
• #(pattern … pattern ellipsis pattern …)

A template is either an identifier, a constant, or one of the following:
• (element …)
• (element element … . template) (ellipsis template)
• #(element …)

where an element is a template optionally followed by an ellipsis. An ellipsis is the identifier specified in the
second form of syntax-rules , or the default identifier ... (three consecutive periods) otherwise.
Here is an example showcasing how when can be defined in terms of if :

LispKit Core 35

LispPad Library Reference 2020-12-23

(define-syntax when
(syntax-rules ()

((_ c e ...)
(if c (begin e ...)))))

(define-library (name …) declaration …) syntax
A library definition takes the following form: (define-library (name …) declaration …) . (name
…) is a list whose members are identifiers and exact non-negative integers. It is used to identify the
library uniquely when importing from other programs or libraries. It is inadvisable, but not an error, for
identifiers in library names to contain any of the characters |, \, ?, *, <, ", :, >, +, [,], / .
A declaration is any of:
• (export exportspec …)
• (import importset …)
• (begin statement …)
• (include filename …)
• (include-ci filename …)
• (include-library-declarations filename …)
• (cond-expand clause …)

An export declaration specifies a list of identifiers which can be made visible to other libraries or programs.
An exportspec takes one of the following forms:
• ident
• (rename ident1 ident2)

In an exportspec, an identifier ident names a single binding defined within or imported into the library,
where the external name for the export is the same as the name of the binding within the library. A
rename spec exports the binding defined within or imported into the library and named by ident1 in each
(ident1 ident2) pairing, using ident2 as the external name.
An import declaration provides a way to import the identifiers exported by another library. It has the
same syntax and semantics as an import declaration used in a program or at the read-eval-print loop.
The begin , include , and include-ci declarations are used to specify the body of the library. They
have the same syntax and semantics as the corresponding expression types.
The include-library-declarations declaration is similar to include except that the contents of
the file are spliced directly into the current library definition. This can be used, for example, to share the
same export declaration among multiple libraries as a simple form of library interface.
The cond-expand declaration has the same syntax and semantics as the cond-expand expression type,
except that it expands to spliced-in library declarations rather than expressions enclosed in begin .
(set! var expr) syntax
Procedure set! is used to assign values to variables. expr is evaluated, and the resulting value is stored
in the location to which variable var is bound. It is an error if var is not bound either in some region
enclosing the set! expression or else globally. The result of the set! expression is unspecified.

10.3 Importing definitions

(import importset …) syntax
An import declaration provides a way to import identifiers exported by a library. Each importset names
a set of bindings from a library and possibly specifies local names for the imported bindings. It takes one
of the following forms:

LispKit Core 36

LispPad Library Reference 2020-12-23

• libraryname
• (only importset identifier …)
• (except importset identifier …)
• (prefix importset identifier)
• (rename importset (ifrom ito) …)

In the first form, all of the identifiers in the named library’s export clauses are imported with the same
names (or the exported names if exported with rename). The additional importset forms modify this set
as follows:
• only produces a subset of the given importset including only the listed identifiers (after any renam-
ing). It is an error if any of the listed identifiers are not found in the original set.

• except produces a subset of the given importset, excluding the listed identifiers (after any renam-
ing). It is an error if any of the listed identifiers are not found in the original set.

• rename modifies the given importset, replacing each instance of ifrom with ito. It is an error if any
of the listed identifiers are not found in the original set.

• prefix automatically renames all identifiers in the given importset, prefixing each with the specified
identifier.

In a program or library declaration, it is an error to import the same identifier more than once with
different bindings, or to redefine or mutate an imported binding with a definition or with set! , or to
refer to an identifier before it is imported. However, a read-eval-print loop will permit these actions.

10.4 Delayed execution

LispKit provides promises to delay the execution of code. Built on top of promises are streams. Streams
are similar to lists, except that the tail of a stream is not computed until it is de-referenced. This allows
streams to be used to represent infinitely long lists. Library (lispkit core) only defines procedures
for streams equivalent to promises. Library (lispkit stream) provides all the list-like functionality.
(promise? obj) procedure
The promise? procedure returns #t if argument obj is a promise, and #f otherwise.
(make-promise obj) procedure
(eager obj)
The make-promise procedure returns a promise which, when forced, will return obj. It is similar to
delay , but does not delay its argument: it is a procedure rather than syntax. If obj is already a promise,
it is returned. eager is the same procedure like make-promise .
(delay expr) syntax
The delay construct is used together with the procedure force to implement lazy evaluation or “call
by need”. (delay expr) returns an object called a promise which, at some point in the future, can be
asked (by the force procedure) to evaluate expr, and deliver the resulting value.
(delay-force expr) syntax
(lazy expr)
The expression (delay-force expr) is conceptually similar to (delay (force expr)) , with the
difference that forcing the result of delay-force will in effect result in a tail call to (force expr)
, while forcing the result of (delay (force expr)) might not. Thus iterative lazy algorithms that
might result in a long series of chains of delay and force can be rewritten using delay-force to prevent
consuming unbounded space during evaluation. lazy is the same procedure like delay-force .

LispKit Core 37

LispPad Library Reference 2020-12-23

(force promise) procedure
The force procedure forces the value of a promise created by delay , delay-force , or make-
promise . If no value has been computed for the promise, then a value is computed and returned. The
value of the promise must be cached (or “memoized”) so that if it is forced a second time, the previously
computed value is returned. Consequently, a delayed expression is evaluated using the parameter values
and exception handler of the call to force which first requested its value. If promise is not a promise, it
may be returned unchanged.

(force (delay (+ 1 2))) ⇒ 3

(let ((p (delay (+ 1 2))))
(list (force p) (force p))) ⇒ (3 3)

(define integers
(letrec ((next (lambda (n)

(delay (cons n (next (+ n 1)))))))
(next 0)))

(define head
(lambda (stream) (car (force stream))))

(define tail
(lambda (stream) (cdr (force stream))))

(head (tail (tail integers))) ⇒ 2

The following example is a mechanical transformation of a lazy stream-filtering algorithm into Scheme.
Each call to a constructor is wrapped in delay , and each argument passed to a deconstructor is wrapped
in force . The use of (delay-force ...) instead of (delay (force ...)) around the body
of the procedure ensures that an ever-growing sequence of pending promises does not exhaust available
storage, because force will, in effect, force such sequences iteratively.

(define (stream-filter p? s)
(delay-force

(if (null? (force s))
(delay ’())
(let ((h (car (force s)))

(t (cdr (force s))))
(if (p? h)

(delay (cons h (stream-filter p? t)))
(stream-filter p? t))))))

(head (tail (tail (stream-filter odd? integers)))) ⇒ 5

The following examples are not intended to illustrate good programming style, as delay , force , and
delay-force aremainly intended for programswritten in the functional style. However, they do illustrate
the property that only one value is computed for a promise, no matter how many times it is forced.

(define count 0)
(define p

(delay (begin (set! count (+ count 1))
(if (> count x) count (force p)))))

(define x 5)
p ⇒ a promise
(force p) ⇒ 6
p ⇒ a promise
(begin (set! x 10) (force p)) ⇒ 6

(stream? obj) procedure
The stream? procedure returns #t if argument obj is a stream, and #f otherwise. If obj is a stream,

LispKit Core 38

LispPad Library Reference 2020-12-23

stream? does not force its promise. If (stream? obj) is #t , then one of (stream-null? obj)
and (stream-pair? obj) will be #t and the other will be #f ; if (stream? obj) is #f , both
(stream-null? obj) and (stream-pair? obj) will be #f .
(make-stream obj) procedure
(stream-eager obj)
The make-stream procedure returns a streamwhich, when forced, will return obj. It is similar to stream-
delay , but does not delay its argument: it is a procedure rather than syntax. If obj is already a stream, it
is returned. stream-eager represents the same procedure like make-stream .
(stream-delay expr) syntax
The stream-delay syntax is used together with procedure stream-force to implement lazy evaluation
or “call by need”. (stream-delay expr) returns an object called a stream which, at some point in the
future, can be asked (by the stream-force procedure) to evaluate expr, and deliver the resulting value.
(stream-delay-force expr) syntax
(stream-lazy expr)
The expression (stream-delay-force expr) is conceptually similar to (stream-delay (stream-
force expr)) , with the difference that forcing the result of stream-delay-force will in effect result
in a tail call to (stream-force expr) , while forcing the result of (stream-delay (stream-force
expr)) might not. Thus iterative lazy algorithms that might result in a long series of chains of delay
and force can be rewritten using stream-delay-force to prevent consuming unbounded space during
evaluation. stream-lazy represents the same procedure like stream-delay-force .

10.5 Symbols

(symbol? obj) procedure
Returns #t if obj is a symbol, otherwise returns #f .
(symbol-interned? obj) procedure
Returns #t if obj is an interned symbol, otherwise returns #f .
(gensym) procedure
(gensym str)
Returns a new (fresh) symbol whose name consists of prefix str followed by a number. If str is not provided,
“g” is used as a prefix.
(symbol=? sym …) procedure
Returns #t if all the arguments are symbols and all have the same names in the sense of string=? .
(string->symbol str) procedure
Returns the symbol whose name is string str. This procedure can create symbols with names containing
special characters that would require escaping when written, but does not interpret escapes in its input.
(string->uninterned-symbol str) procedure
Returns a new uninterned symbol whose name is str. This procedure can create symbols with names
containing special characters that would require escaping when written, but does not interpret escapes in
its input.
(symbol->string sym) procedure
Returns the name of symbol sym as a string, but without adding escapes.

LispKit Core 39

LispPad Library Reference 2020-12-23

10.6 Booleans

The standard boolean objects for true and false are written as #t and #f . Alternatively, they can be
written #true and #false , respectively. What really matters, though, are the objects that the Scheme
conditional expressions (if , cond , and , or , when , unless , do) treat as true or false. The phrase a
“true value” (or sometimes just “true”) means any object treated as true by the conditional expressions, and
the phrase “a false value” (or “false”) means any object treated as false by the conditional expressions.
Of all the Scheme values, only #f counts as false in conditional expressions. All other Scheme values,
including #t , count as true. Boolean literals evaluate to themselves, so they do not need to be quoted in
programs.
(boolean? obj) procedure
The boolean? predicate returns #t if obj is either #t or #f and returns #f otherwise.

(boolean? #f) ⇒ #t
(boolean? 0) ⇒ #f
(boolean? '()) ⇒ #f

(boolean=? obj1 obj2 …) procedure
Returns #t if all the arguments are booleans and all are #t or all are #f .
(and test …) syntax
The test … expressions are evaluated from left to right, and if any expression evaluates to #f , then #f
is returned. Any remaining expressions are not evaluated. If all the expressions evaluate to true values,
the values of the last expression are returned. If there are no expressions, then #t is returned.

(and (= 2 2) (> 2 1)) ⇒ #t
(and (= 2 2) (< 2 1)) ⇒ #f
(and 12 'c '(f g)) ⇒ (f g)
(and) ⇒ #t

(or test …) syntax
The test … expressions are evaluated from left to right, and the value of the first expression that evaluates
to a true value is returned. Any remaining expressions are not evaluated. If all expressions evaluate to
#f or if there are no expressions, then #f is returned.

(or (= 2 2) (> 2 1)) ⇒ #t
(or (= 2 2) (< 2 1)) ⇒ #t
(or #f #f #f) ⇒ #f
(or (memq 'b '(a b c)) (/ 3 0)) ⇒ (b c)

(not obj) procedure
The not procedure returns #t if obj is false, and returns #f otherwise.

(not #t) ⇒ #f
(not 3) ⇒ #f
(not (list 3)) ⇒ #f
(not #f) ⇒ #t
(not '()) ⇒ #f
(not (list)) ⇒ #f
(not 'nil) ⇒ #f

(opt pred obj) procedure
(opt pred obj failval)

LispKit Core 40

LispPad Library Reference 2020-12-23

The opt procedure returns failval if obj is #f . If obj is not #f , opt applies predicate pred to obj and
returns the result of this function application. If failval is not provided, #t is used as a default. This
function is useful to verify a given predicate pred for an optional value obj.

10.7 Conditional and inclusion compilation

(cond-expand ce-clause1 ce-clause2 …) syntax
The cond-expand expression type provides a way to statically expand different expressions depending
on the implementation. A ce-clause takes the following form:
(featurerequirement expression …)
The last clause can be an “else clause,” which has the form:
(else expression …)
A featurerequirement takes one of the following forms: - featureidentifier - (library name) - (and
featurerequirement …) - (or featurerequirement …) - (not featurerequirement)
LispKit maintains a list of feature identifiers which are present, as well as a list of libraries which can
be imported. The value of a featurerequirement is determined by replacing each featureidentifier and
(library name) with #t , and all other feature identifiers and library names with #f , then evaluating
the resulting expression as a Scheme boolean expression under the normal interpretation of and , or ,
and not .
A cond-expand is then expanded by evaluating the featurerequirements of successive ce-clause in order
until one of them returns #t . When a true clause is found, the corresponding expression … are expanded
to a begin , and the remaining clauses are ignored. If none of the listed featurerequirement evaluates
to #t , then if there is an “else” clause, its expression … are included. Otherwise, the behavior of the
cond-expand is unspecified. Unlike cond , cond-expand does not depend on the value of any variables.
The exact features provided are defined by the implementation, its environment and host platform.
LispKit supports the following featureidentifier:
• lispkit
• r7rs
• ratios
• complex
• syntax-rules
• little-endian
• big-endian
• dynamic-loading
• modules
• 32bit
• 64bit
• macos
• macosx
• ios
• linux
• i386
• x86-64
• arm64
• arm

LispKit Core 41

LispPad Library Reference 2020-12-23

(include str1 str2 …) syntax
(include-ci str1 str2 …)
Both include and include-ci take one or more filenames expressed as string literals, apply an
implementation-specific algorithm to find corresponding files, read the contents of the files in the spec-
ified order as if by repeated applications of read, and effectively replace the include or include-ci
expression with a begin expression containing what was read from the files. The difference between the
two is that include-ci reads each file as if it began with the #!fold-case directive, while include
does not.

10.8 Multiple values

(values obj …) procedure
Delivers all of its arguments to its continuation. The values procedure might be defined as follows:

(define (values . things)
(call-with-current-continuation

(lambda (cont) (apply cont things))))

(call-with-values producer consumer) procedure
Calls its producer argument with no arguments and a continuation that, when passed some values, calls
the consumer procedure with those values as arguments. The continuation for the call to consumer is the
continuation of the call to call-with-values .

(call-with-values (lambda () (values 4 5))
(lambda (a b) b))

⇒ 5
(call-with-values * -)

⇒ -1

(apply-with-values proc vals) procedure
apply-with-values calls procedure procwith vals as its arguments and returns the corresponding result.
vals might refer to multiple values created via procedure values . This is a LispKit-specific procedure
that relies on multiple return values being represented by a container object.

10.9 Environments

(environment? obj) procedure
Returns #t if obj is an environment. Otherwise, it returns #f.
(environment list1 …) procedure
This procedure returns an environment that results by starting with an empty environment and then
importing each list, considered as an import set, into it. The bindings of the environment represented by
the specifier are immutable, as is the environment itself.
(environment-bound-names env) procedure
Returns a list of the symbols that are bound by environment env.
(environment-bindings env) procedure
Returns a list of the bindings of environment env. Each element of this list takes one of two forms: the
form (name) indicates that name is bound but unassigned, while (name obj) indicates that name is bound
to value obj.

LispKit Core 42

LispPad Library Reference 2020-12-23

(environment-bound? env ident) procedure
Returns #t if symbol ident is bound in environment env; otherwise returns #f .
(environment-lookup env ident) procedure
Returns the value to which symbol ident is bound in environment env. This procedure throws an error if
ident is not bound to a value in env.
(environment-assignable? env ident) procedure
Symbol ident must be bound in environment env. Procedure environment-assignable? returns #t if
the binding of ident may be modified.
(environment-assign! env ident obj) procedure
Symbol ident must be bound in environment env and must be assignable. Procedure environment-
assign! modifies the binding to have obj as its value.
(scheme-report-environment version) procedure
If version is equal to 5, corresponding to R5RS, scheme-report-environment returns an environment that
contains only the bindings defined in the R5RS library.
(null-environment version) procedure
If version is equal to 5, corresponding to R5RS, the null-environment procedure returns an environment
that contains only the bindings for all syntactic keywords defined in the R5RS library.
(interaction-environment) procedure
This procedure returns a mutable environment which is the environment in which expressions entered
by the user into a read-eval-print loop are evaluated. This is typically a superset of bindings from (lispkit
base).

10.10 Syntax errors

(syntax-error message args …) syntax
syntax-error behaves similarly to error except that implementations with an expansion pass separate
from evaluation should signal an error as soon as syntax-error is expanded. This can be used as
a syntax-rules template for a pattern that is an invalid use of the macro, which can provide more
descriptive error messages.
message is a string literal, and args … are arbitrary expressions providing additional information. Appli-
cations cannot count on being able to catch syntax errors with exception handlers or guards.

(define-syntax simple-let
(syntax-rules ()

((_ (head ... ((x . y) val) . tail) body1 body2 ...)
(syntax-error "expected an identifier but got" (x . y)))

((_ ((name val) ...) body1 body2 ...)
((lambda (name ...) body1 body2 ...) val ...))))

10.11 Utilities

(void) procedure
Performs no operation and returns nothing. This is often useful as a placeholder or whenever a no-op
statement is needed.
(void? obj) procedure
Returns #t if obj is the “void” value (i.e. no value); returns #f otherwise.

LispKit Core 43

LispPad Library Reference 2020-12-23

(identity obj) procedure
The identity function is always returning its argument obj.

LispKit Core 44

11 LispKit CSV

Library (lispkit csv) provides a simple API for reading and writing structured data in CSV format
from a text file. The API provides two different levels of abstraction: reading and writing at
1. line-level (lower-level API), and
2. record-level (higher-level API).

A text file in CSV format typically has the following structure:

"First name", "Last name", "Birth date"
Steve, Jobs, 1955-02-24
Bill, Gates, "1955-10-28"
"Jeff", "Bezos", "1964-01-12"

The first line is called the header. It defines the names and the order of the columns. Columns are
separated by a separator character (which is , in the example above). The column names can optionally
be wrapped by a quotation character, which is needed if the name contains, for instance, the separator
character.
Each following line defines one data record which provides values for the columns defined in the header.
The values are again separated by the separator character and they may be optionally wrapped by the
quotation character. If a value is wrapped with a quotation character, the same character can be used
within the value if it is escaped. The quotation character can be escaped by a sequence of two quotation
characters (e.g. if " is used as a quotation character, "" encodes a single " character within the string
value).
The client of the API decides how to handle inconsistencies between the lines, e.g. if lines have too few
or too many values.

11.1 CSV ports

Both levels use a CSV port to configure the textual input/output port, the separator and quotation charac-
ter.
(csv-port? obj) procedure
Returns #t if obj is a CSV port; returns #f otherwise.
(csv-input-port? obj) procedure
Returns #t if obj is a CSV port for reading data; returns #f otherwise.
(csv-output-port? obj) procedure
Returns #t if obj is a CSV port for writing data; returns #f otherwise.
(make-csv-port) procedure
(make-csv-port tport)
(make-csv-port tport sep)
(make-csv-port tport sep quote)

45

LispPad Library Reference 2020-12-23

Returns a new CSV port for reading or writing data via an underlying textual port tport. If tport is an
output port, the CSV port can be used for writing. If tport is an input port, the CSV port can be used
for reading. The default for tport is the current input port current-input-port exported from library
(lispkit port) .
The separation character used by the CSV port is sep, the quotation character is quote. The default for sep
is #\, and for quote the default is #\" .
(csv-base-port csvp) procedure
Returns the textual port on which the CSV port csvp is based on.
(csv-separator csvp) procedure
Returns the separation character used by the CSV port csvp.
(csv-quotechar csvp) procedure
Returns the quotation character used by the CSV port csvp.

11.2 Line‐level API

The line-level API provides means to read a whole CSV file via csv-read and write data in CSV format
via csv-write .
(csv-read csvp) procedure
(csv-read csvp readheader?)
Reads from CSV port csvp first the header, if readheader? is set to #t , and then all the lines until the
end of the input is reached. Procedure csv-read returns two values: the header line (a list of strings
representing the column names), and a vector of all data lines, which itself are lists of strings representing
the individual field values. The default for readheader? is #t . If readheader? is set to #f , the first result
of csv-read is always #f .
(csv-write csvp header lines) procedure
Writes to CSV port csvp first the header (a list of strings representing the column names) unless header is
set to #f . Then procedure csv-write writes each line of lines . lines is a vector of lists representing
the individual field values in string form.

11.3 Record‐level API

The higher level API has a notion of records. The default representation for records are association lists.
The functions for reading and writing records are csv-read-records and csv-write-records :
(csv-read-records csvp) procedure
(csv-read-records csvp make-col)
(csv-read-records csvp make-col make-record)
Reads from CSV port csvp first the header and then all the data lines until the end of the input is reached.
Header names (strings) are mapped via procedure make-col into column identifiers or column factories
(i.e. procedures which take one argument, a column value, and they return either a representation of this
column if the value is valid, or #f if the column value is invalid). With make-record a list of column
identifiers and column factories as well as a list of column values (strings) of a data line are mapped into
a record. Procedure csv-read-records returns a vector of records.
The default make-col procedure is make-symbol-column . The default make-record function is make-
alist-record/excess .

LispKit CSV 46

LispPad Library Reference 2020-12-23

(csv-write-records csvp header records) procedure
(csv-write-records csvp header records col->str)
(csv-write-records csvp header records col->str field->str)
First writes the header to CSV port csvp by mapping header , which is a list of column identifiers. to a
list of header names using procedure col->str. Then, csv-write-records writes all the records from
the vector records by mapping each record to a data line. This is done by applying field->str to all column
identifiers for the record. field->str takes two arguments: a column identifier and the record.
The default implementation for procedure col->str is symbol->string . The default implementation for
procedure field->str is alist-field->string .
(make-symbol-column str) procedure
Returns a symbol representing the trimmed string str. If the trimmed string is empty, make-symbol-
column returns #t . This procedure can be used for creating column identifers out of column names in
procedure csv-read-records .
(make-alist-record cols fields) procedure
Returns a new record given a list of column identifiers or column factories (i.e. procedures which take
one argument, a column value, and they return either a representation of this column if the value is valid,
or #f if the column value is invalid) cols, and a list of column values fields.
This procedure represents records as association lists, iterating through all cols and fields values. If there
are more fields values than cols expressions, than they are skipped. If there are more cols expressions than
fields values, #f is used as a default for missing fields values. If a cols expression is a procedure, the
association entry gets created by calling the procedure with the corresponding fields value. For all other
cols expression types, a pair is created with the cols expression being the car and the fields value being the
cdr.
(make-alist-record/excess ?) procedure
Returns a new record given a list of column identifiers or column factories (i.e. procedures which take
one argument, a column value, and they return either a representation of this column if the value is valid,
or #f if the column value is invalid) cols, and a list of column values fields.
This procedure represents records as association lists, iterating through all cols and fields values. If there
are more fields values than cols expressions, than #f is used as a default cols expression. If there are more
cols expressions than fields values, #f is used as a default for missing fields values. If a cols expression
is a procedure, the association entry gets created by calling the procedure with the corresponding fields
value. For all other cols expression types, a pair is created with the cols expression being the car and the
fields value being the cdr.
(alist-field->string record col) procedure
Returns the column value of column col from association list record. alist-field->string assumes
that record is an association list whose values are strings. This is how the procedure is defined:

(define (alist-field->string record column)
(cdr (assq column record)))

LispKit CSV 47

12 LispKit Datatype

Library (lispkit datatype) implements algebraic datatypes for LispKit. It provides the following
functionality:
• define-datatype creates a new algebraic datatype consisting of a type test predicate and a number
of variants. Each variant implicitly defines a constructor and a pattern.

• define-pattern introduces a new pattern and constructor for an existing datatype variant.
• match matches a value of an algebraic datatype against patterns, binding pattern variables and
executing the code of the first case whose pattern matches the value.

12.1 Usage

Here is an example of a datatype defining a tree for storing and finding elements:

(define-datatype tree tree?
(empty)
(node left element right) where (and (tree? left) (tree? right)))

The datatype tree defines a predicate tree? for checking whether a value is of type tree . In addition,
it defines two variants with corresponding constructors empty and node for creating values of type tree
. Variant node defines an invariant that prevents nodes from being constructed unless left and right
are also trees.
The following line defines a new tree:

(define t1 (node (empty) 4 (node 7 (empty) (empty))))

Using match , values like t1 can be deconstructed using pattern matching. The following function
elements shows how to collect all elements from a tree in a list:

(define (elements tree)
(match tree

((empty) ())
((node l e r) (append (elements l) (list e) (elements r)))))

match is a special form which takes a value of an algebraic datatype and matches it against a list of cases.
Each case defines a pattern and a sequence of statements which get executed if the pattern matches the
value.
Cases can also optionally define a guard which is a boolean expression that gets executed if the pattern
of the case matches a value. Only if the guard evaluates to true, the statements of the case get executed.
Otherwise, pattern matching continues. The following function insert demonstrates this functional-
ity:

48

LispPad Library Reference 2020-12-23

(define (insert tree x)
(match tree

((empty)
(node (empty) x (empty)))

((node l e r) where (< x e)
(node (insert l x) e r))

((node l e r)
(node l e (insert r x)))))

A new tree t2 , with two new elements inserted, can be created like this:

(define t2 (insert (insert t1 2) 9))

If a pattern is used frequently containing a lot of boilerplate, it is possible to define a shortcut using the
define-pattern syntax:

(define-pattern (single x)
(node (empty) x (empty)))

With this declaration, it is possible to use single in patterns. The following example also shows that it
is possible to use else for defining a fallback case, if no other pattern is matching.

(match t
((empty) #f)
((single x) x)
(else (error "two many elements")))

single can also be used as a constructor for creating trees with a single element:

(single 6)

An advanced feature of match is the usage of pattern alternatives in a single case of a match construct.
This can be achieved using the or form on the top level of a pattern:

(define (has-many-elements tree)
(match tree

((or (empty) (single _)) #f)
(else #t)))

The underscore in the (single _) subpattern is a wildcard that matches every value and that does not
bind a new variable.

12.2 API

(define-datatype type (constr arg …) …) syntax
(define-datatype type pred (constr arg …) …)
(define-datatype type pred (constr arg …) where condition…_)
Defines a new datatype with a given number of datatype variants. The definition requires the symbol
type denoting the new type, an optional symbol pred which gets bound to a type test function for testing
whether a value is an instance of this type, and a list of constructors of the form (constr arg1 arg2 …)

LispKit Datatype 49

LispPad Library Reference 2020-12-23

where constr is the constructor and arg1, arg2, … are parameter names of the constructor. A constructor
can be annotated with an invariant for defining requirements the parameters need to meet. This is done
via clause where expr succeeding the constructor declaration. condition is a boolean expression which
gets checked when the constructor gets invoked.
(define-pattern (constr arg …) (impl expr …)) syntax
Defines a new pattern (constr arg …) which specializes an existing pattern (impl expr …). Such custom
patterns can be used in pattern matching expressions as well as constructors for defining values of an
algebraic datatype.
(match expr case …) syntax
(match expr case … (else stat …))
match provides a mechanism for decomposing values of algebraic datatypes via pattern matching. A
match construct takes a value expr to pattern match on, as well as a sequence of cases. Each case consists
of pattern alternatives, an optional guard, and a sequence of statements:

case = `(` patterns stat ... `)`
| `(` patterns `where` condition stat ... `)`

patterns = pattern
| `(` `or` pattern ... `)`

pattern = '_' ; wildcard
| var ; variable
| `#t` ; literal boolean (true)
| `#f` ; literal boolean (false)
| string ; literal string
| number ; literal number
| character ; literal character
| vector ; literal vector
| `'` expr ; constant expression
| `,` expr ; value (result of evaluating expr)
| pattern `as` var ; pattern bound to variable
| `(` `list` pattern ... `)` ; list pattern
| `(` `list` pattern ... `.` var `)` ; list pattern with rest
| `(` `list` pattern ... `.` `_` `)` ; list pattern with unbound rest
| `(` constr pattern ... `)` ; variant pattern

match iterates through the cases and executes the sequence of statements stat … of the first case whose
pattern is matching expr and whose guard condition evaluates to true. The value returned by this
sequence of statements is returned by match .

LispKit Datatype 50

13 LispKit Date‐Time

Library (lispkit date-time) provides functionality for handling time zones, dates, and times. Time
zones are represented by string identifiers referring to the region and corresponding city, e.g. "Amer-
ica/Los_Angeles" . Dates and times are represented via date-time data structures. These encapsulate
the following components:
• time zone: the time zone of the date
• date: the date consisting of its year, month, and day
• time: the time on date consisting of the hour (>= 0, < 24), the minute (>= 0, < 60), the second
(>= 60, <60), and the nano second.

The library uses a floating-point representation of seconds since 00:00 UTC on January 1, 1970, as a
means to refer to specific points in time independent of timezones. This means that, for instance, for
comparing date-times with each other, a user would have to convert them to seconds and then compare
the seconds instead.
For now, (lispkit date-time) assumes all dates are based on the Gregorian calendar, independent of
the settings at the operating system-level.

13.1 Time zones

Time zones are represented by string identifiers referring to the region and corresponding city,
e.g. "America/Los_Angeles" . Procedure timezones returns a list of all supported time zone
identifiers. Each time zone has a locale-specific name and an offset in seconds from Greenwhich Mean
Time. Some time zones also have an abbreviation which can be used as an alternative way to identify a
timezone.
(timezones) procedure
(timezones filter)
Returns a list of string identifiers for all supported time zones. If filter is provided, it can either be set to
#f , in which case a list of abbreviations is returned instead, or it is a string, and only time zone identifiers
which contain filter are returned.
(timezone? obj) procedure
Returns #t if obj is a valid time zone identifier or time zone abbreviation; returns #f otherwise.
(timezone) procedure
(timezone ident)
Returns the identifier for the time zone specified by ident. ident can either be an identifier, an abbreviation
or a GMT offset as a floating-point number or integer. If ident does not refer to a supported time zone,
procedure timezone will fail.
(timezone-name tz) procedure
(timezone-name tz locale)
(timezone-name tz locale format)

51

LispPad Library Reference 2020-12-23

Returns a locale-specific name for time zone tz. If locale is not specified, the current locale defined at
the operating-system level is used. format specifies the name format. It can have one of the following
symbolic values:
• standard
• standard-short
• dst
• dst-short
• generic
• generic-short

(timezone-abbreviation tz) procedure
Returns a string representing a time zone abbreviation for tz; e.g. "PDT" . If the time zone tz does not
have an abbreviation, this function returns #f .
(timezone-gmt-offset tz) procedure
Returns the difference in seconds between time zone tz and Greenwich Mean Time. The difference is
returned as a floating-point number (since seconds are always represented as such by this library).

13.2 Time stamps

Time stamps, i.e. discreet points in time, are represented as floating-point numbers corresponding to the
number of seconds since 00:00 UTC on January 1, 1970.
(current-seconds) procedure
Returns a floating-point number representing the number of seconds since 00:00 UTC on January 1,
1970.
(seconds->date-time secs) procedure
(seconds->date-time secs tz)
Converts the given number of seconds secs into date-time format for the given time zone tz. secs is a
floating-point number. It is interpreted as the number of seconds since 00:00 UTC on January 1, 1970.
secs is negative if the date-time is earlier than 00:00 UTC on January 1, 1970. If tz is missing, the current,
operating-system defined time zone is used.
(date-time->seconds dtime) procedure
Returns a floating-point number representing the number of seconds since 00:00 UTC on January 1, 1970
for the given date-time object dtime.

13.3 Date‐times

(date-time? obj) procedure
Returns #t if obj is a date-time object; returns #f otherwise.
(date-time) procedure
(date-time year month day)
(date-time year month day hour)
(date-time year month day hour min)
(date-time year month day hour min sec)
(date-time year month day hour min sec nano)
(date-time tz)
(date-time tz year month day)

LispKit Date-Time 52

LispPad Library Reference 2020-12-23

(date-time tz year month day hour)
(date-time tz year month day hour min)
(date-time tz year month day hour min sec)
(date-time tz year month day hour min sec nano)
Constructs a date-time representation out of the given date time components. tz is the only string argu-
ment; it is referring to a time zone. All other arguments are numeric arguments. This procedure returns a
date-time object for the specified time at the given date. If no date components are provided as arguments,
procedure date-time returns a date-time for the current date and time.
(week->date-time year week) procedure
(week->date-time year week wday)
(week->date-time year week wday hour)
(week->date-time year week wday hour min)
(week->date-time year week wday hour min sec)
(week->date-time year week wday hour min sec nano)
(week->date-time tz year week) (week->date-time tz year week wday)
(week->date-time tz year week wday hour)
(week->date-time tz year week wday hour min)
(week->date-time tz year week wday hour min sec)
(week->date-time tz year week wday hour min sec nano)
Constructs a date-time representation out of the given date time components. tz is the only string argu-
ment; it is referring to a time zone. All other arguments are numeric arguments. Argument wday specifies
the week day in the given week. Week days are given numbers from 1 (= Monday) to 7 (= Sunday). This
procedure returns a date-time object for the specified time at the given date.
The difference to date-time is that this procedure does not refer to a month and day. It rather refers to
the week number as well as the weekday within this specified week number.
(date-time-in-timezone dtime) procedure
(date-time-in-timezone dtime tzone)
Constructs a date-time representation of the same point in time like dtime, but in a potentially different
time zone tzone. If tzone is not given, the default time zone specified by the user in the operating system
will be used.
(string->date-time str) procedure
(string->date-time str tz)
(string->date-time str tz locale)
(string->date-time str tz locale format)
Extracts a date and time from the given string str in the time zone tz, or the current time zone if tz is
omitted. The format of the string representation is defined in terms of locale and format. format can have
three different forms:
1. Combined format identifier for date and time: date-time parsing is based on the settings of the
operating system. format is one of the following symbols: none , short , medium , long , or full
.

2. Separate format identifiers for date and time: date-time parsing is based on the settings of the
operating system, but the format for dates and times is specified separately. format is a list of the
form (dateformat timeformat) where both dateformat and timeformat are one of the 5 symbols
listed under 1. This makes it possible, for instance, to just parse a date (without time) in string form
to a date-time object, e.g. by using (short none) as format.

3. Custom format specifier: date-time parsing is based on a custom format string. format is a string
using the following characters as placeholders. Repetitions of the placeholder characters are used
to specify the width and format of the field.

LispKit Date-Time 53

LispPad Library Reference 2020-12-23

• y : Year
• M : Month
• d : Day
• H : Hour (12 hours)
• h : Hour (24 hours)
• m : Minute
• s : Second
• S : Micro second
• Z : Time zone
• a : AM/PM
• E : Weekday

Here are a few examples:

EEEE, MMM d, yyyy ~~> Thursday, Feb 8, 1973
dd/MM/yyyy ~~> 08/02/1973
dd-MM-yyyy HH:mm ~~> 08-02-1973 17:01
MMM d, h:mm a ~~> Thu 8, 2:11 AM
yyyy-MM-dd'T'HH:mm:ssZ ~~> 1973-08-02T17:01:31+0000
HH:mm:ss.SSS ~~> 11:02:19.213

(date-time->string dtime) procedure
(date-time->string dtime locale)
(date-time->string dtime locale format)
Returns a string representation of the date-time object dtime. The format of the string is defined in terms
of locale and format. format can have three different forms (just like for string->date-time):
1. Combined format identifier for date and time: date-time formatting is based on the settings of
the operating system. format is one of the following symbols: none , short , medium , long , or
full .

2. Separate format identifiers for date and time: date-time formatting is based on the settings of
the operating system, but the format for dates and times is specified separately. format is a list of the
form (dateformat timeformat) where both dateformat and timeformat are one of the 5 symbols
listed under 1. This makes it possible, for instance, to just output a date (without time) in string
form, e.g. by using (short none) as format.

3. Custom format specifier: date-time formatting is based on a custom format string. format is a
string using the following characters as placeholders. Repetitions of the placeholder characters are
used to specify the width and format of the field.
• y : Year
• M : Month
• d : Day
• H : Hour (12 hours)
• h : Hour (24 hours)
• m : Minute
• s : Second
• S : Micro second
• Z : Time zone
• a : AM/PM
• E : Weekday

Here are a few examples:

LispKit Date-Time 54

LispPad Library Reference 2020-12-23

EEEE, MMM d, yyyy ~~> Thursday, Feb 8, 1973
dd/MM/yyyy ~~> 08/02/1973
dd-MM-yyyy HH:mm ~~> 08-02-1973 17:01
MMM d, h:mm a ~~> Thu 8, 2:11 AM
yyyy-MM-dd'T'HH:mm:ssZ ~~> 1973-08-02T17:01:31+0000
HH:mm:ss.SSS ~~> 11:02:19.213

(date-time->iso8601-string dtime) procedure
Returns a string representation of the date-time object dtime in ISO 8601 format.
(date-time-timezone dtime) procedure
Returns the time zone of dtime.
(date-time-year dtime) procedure
Returns the year of dtime.
(date-time-month dtime) procedure
Returns the month of dtime.
(date-time-day dtime) procedure
Returns the day of dtime.
(date-time-hour dtime) procedure
Returns the hour of dtime.
(date-time-minute dtime) procedure
Returns the minute of dtime.
(date-time-second dtime) procedure
Returns the second of dtime.
(date-time-nano dtime) procedure
Returns the nano-second of dtime.
(date-time-weekday dtime) procedure
Returns the week day of dtime. Week days are represented as fixnums where 1 is Monday, 2 is Tuesday,
…, and 7 is Sunday.
(date-time-week dtime) procedure
Returns the week number of dtime according to the ISO-8601 standard. Based on this standard, weeks
start on Monday. The first week of the year is the week that contains that year’s first Thursday.
(date-time-dst-offset dtime) procedure
Returns the daylight saving time offset of dtime in seconds related to GMT. If daylight savings time is not
active, date-time-dst-offset returns 0.0 . The result is always a floating-point number.
(date-time-hash dtime) procedure
Returns a hash code for the given date-time object. This hash code can be used in combination with both
date-time=? and date-time-same? .

13.4 Date‐time predicates

(date-time-same? dtime1 dtime2) procedure
Returns #t if date-time dtime1 and dtime2 have the same timezone and refer to the same point in time,
i.e. (date-time->seconds dtime1) and (date-time->seconds dtime2) are equals.

LispKit Date-Time 55

LispPad Library Reference 2020-12-23

(define d1 (date-time 'CET))
(define d2 (date-time-in-timezone d1 'PST))
(date-time-same? d1 d1) ⇒ #t
(date-time-same? d1 d2) ⇒ #f
(date-time=? d1 d2) ⇒ #t

(date-time=? dtime1 dtime2) procedure
Returns #t if date-time dtime1 and dtime2 specify the same point in time, i.e. (date-time->seconds
dtime1) and (date-time->seconds dtime2) are equals.

(define d1 (date-time 'CET))
(define d2 (date-time-in-timezone d1 'PST))
(date-time=? d1 d2) ⇒ #t
(date-time=? d1 (date-time 'CET)) ⇒ #f

(date-time<? dtime1 dtime2) procedure
Returns #t if date-time dtime1 specifies an earlier point in time compared to dtime2, i.e. (date-time-
>seconds dtime1) is less than (date-time->seconds dtime2) .
(date-time>? dtime1 dtime2) procedure
Returns #t if date-time dtime1 specifies a later point in time compared to dtime2, i.e. (date-time-
>seconds dtime1) is greater than (date-time->seconds dtime2) .
(date-time<=? dtime1 dtime2) procedure
Returns #t if date-time dtime1 specifies an earlier or equal point in time compared to dtime2, i.e. (date-
time->seconds dtime1) is less than or equal to (date-time->seconds dtime2) .
(date-time>=? dtime1 dtime2) procedure
Returns #t if date-time dtime1 specifies a later or equal point in time compared to dtime2, i.e. (date-
time->seconds dtime1) is greater than or equal to (date-time->seconds dtime2) .
(date-time-has-dst? dtime) procedure
Returns #t if daylight saving time is active for dtime; returns #f otherwise.

13.5 Date‐time operations

(date-time-add dtime days) procedure
(date-time-add dtime days hrs)
(date-time-add dtime days hrs min)
(date-time-add dtime days hrs min sec)
(date-time-add dtime days hrs min sec nano)
Compute a new date-time from adding days, hrs, min, sec, and nano (all fixnums) to the given date-time
dtime. The resulting date-time is using the same timezone like dtime.
(date-time-add-seconds dtime sec) procedure
Compute a new date-time from adding the number of seconds sec (a flonum) to the given date-time
dtime.
(date-time-diff-seconds dtime1 dtime2) procedure
Computes the difference between dtime2 and dtime1 as a number of seconds (a flonum).
(next-dst-transition dtime) procedure
Returns the date and time when the next daylight savings time transition takes place after dtime. next-
dst-transition returns #f if there is no daylight savings time for the time zone of dtime.

LispKit Date-Time 56

14 LispKit Debug

Library (lispkit debug) provides utilities for debugging code. Available are procedures for measuring
execution latencies, for tracing procedure calls, for expanding macros, for disassembling code, as well as
for inspecting the execution environment.

14.1 Timing execution

(time expr) syntax
time compiles expr and executes it. The form displays the time it took to execute expr as a side-effect. It
returns the result of executing expr.
(time-values expr) syntax
time-values executes expr. If expr evaluates to n values x1, ..., xn , time-values returns n + 1
values t, x1, ..., xn where t is the time it takes to evaluate expr.

14.2 Tracing procedure calls

(trace-calls) procedure
(trace-calls level)
This function is used to enable/disable call tracing. When call tracing is enabled, all function calls that are
executed by the virtual machine are being printed to the console. Call tracing operates at three levels:
• 0 : Call tracing is switched off
• 1 : Call tracing is enabled only for procedures for which it is enabled (via function set-procedure-

trace!)
• 2 : Call tracing is switched on for all procedures (independent of procedure-level tracing being
enabled or disabled)

(trace-calls n) will set call tracing to level n . If the level is ommitted, trace-calls will return the
current call tracing level.
For instance, if call tracing is enabled via (trace-calls 2) , executing (fib 3) will print the following
call trace.

> (define (fib n)
(if (< n 2) n (+ (fib (- n 1)) (fib (- n 2)))))

> (trace-calls 2)
> (fib 2)

↘ (fib 2) in <repl>
→ (< 2 2) in fib
← #f from <
→ (- 2 1) in fib
← 1 from -
→ (fib 1) in fib

→ (< 1 2) in fib

57

LispPad Library Reference 2020-12-23

← #t from < in fib
← 1 from fib in fib
→ (- 2 2) in fib
← 0 from -
→ (fib 0) in fib

→ (< 0 2) in fib
← #t from < in fib

← 0 from fib in fib
↘ (+ 1 0) in fib
← 1 from fib

1

Function invocations are prefixed with → , or ↘ if it’s a tail call. The value returned by a function call is
prefixed with ← .
(procedure-trace? proc) procedure
Returns #f if procedure-level call tracing is disabled for proc, #t otherwise.
(set-procedure-trace! proc trace?) procedure
Enables procedure-level call tracing for procedure proc if trace? is set to #t . It disables call tracing for
proc if trace? is #f .

14.3 Macro expansion

(quote-expanded expr) syntax
quote-expanded is syntax for macro-expanding expression expr in the current syntactical environment.
Macro-expansion is applied consecutively as long as the top-level can be expanded further.

(quote-expanded (assert (+ 1 2)))
⇒ (if (not (+ 1 2))

(assertion (quote (+ 1 2))))

(quote-expanded-1 expr) syntax

quote-expanded-1 is syntax for macro-expanding expression expr in the current syntactical environment.
Macro-expansion is applied at most once, even if the top-level can be expanded further.

(quote-expanded-1 (for x in '(1 2 3) (display x)))
⇒ (dolist (x (quote (1 2 3))) (display x))

(macroexpand expr) procedure
(macroexpand expr env)
Procedure macroexpand applies macro-expansion to the expression expr in the environment env as long
as the expression on its top-level can be expanded further. If env is not provided, the current interaction
environment is used.

(macroexpand
'(dotimes (x (+ 2 2)) (display x) (newline)))

⇒ (do ((maxvar (+ 2 2))
(x 0 (fx1+ x)))
((fx>= x maxvar))

(display x)
(newline))

LispKit Debug 58

LispPad Library Reference 2020-12-23

(macroexpand-1 expr) procedure
(macroexpand-1 expr env)
Procedure macroexpand-1 applies macro-expansion to the expression expr in the environment env at
most once. The resulting expression might therefore only be partially expanded at the top-level. If env is
not provided, the current interaction environment is used.

(macroexpand-1 '(for x in '(1 2 3) (display x)))
⇒ (dolist (x (quote (1 2 3))) (display x))
(macroexpand-1

(macroexpand-1
'(for x in '(1 2 3) (display x))))

⇒ (let ((x (quote ()))
(ys (quote (1 2 3))))

(if (null? ys)
(void)
(do ((xs ys (cdr xs)))

((null? xs))
(set! x (car xs))
(display x))))

14.4 Disassembling code

(compile expr) procedure
Compiles expression expr and displays the disassembled code. This is what is being printedwhen executing
(compile '(do ((i 0 (fx1+ i)))((fx> i 10))(display i)(newline))) :

CONSTANTS:
0: #<procedure display>
1: #<procedure newline>

INSTRUCTIONS:
0: alloc 1
1: push_fixnum 0
2: make_local_variable 0
3: push_local_value 0
4: push_fixnum 10
5: fx_gt
6: branch_if 14 ;; jump to 20
7: make_frame
8: push_constant 0 ;; #<procedure display>
9: push_local_value 0
10: call 1
11: pop
12: make_frame
13: push_constant 1 ;; #<procedure newline>
14: call 0
15: pop
16: push_local_value 0
17: fx_inc
18: set_local_value 0
19: branch -16 ;; jump to 3
20: push_void
21: reset 0, 1

LispKit Debug 59

LispPad Library Reference 2020-12-23

22: return

(disassemble proc) procedure
Disassembles procedure proc and prints out the code. This is what is being printed when executing (dis-
assemble caddr) :

CONSTANTS:
INSTRUCTIONS:

0: assert_arg_count 1
1: push_global 426
2: make_frame
3: push_global 431
4: push_local 0
5: call 1
6: tail_call 1

14.5 Execution environment

(gc) procedure
Force garbage collection to be performed.
(available-symbols) procedure
Returns a list of all symbols that have been used so far.
(loaded-libraries) procedure
Returns a list of all libraries that have been loaded so far.

> (loaded-libraries)
((lispkit draw) (lispkit base) (lispkit port) (lispkit control) (lispkit type) (lispkit list)

(lispkit string) (lispkit math) (lispkit date-time) (lispkit dynamic) (lispkit char-set)
(lispkit bytevector) (lispkit char) (lispkit vector) (lispkit regexp) (lispkit record)
(lispkit hashtable) (lispkit system) (lispkit core) (lispkit gvector) (lispkit box))

↪

↪

↪

(loaded-sources) procedure
Returns a list of all sources that have been loaded.
(environment-info) procedure
Prints out debug information about the current execution environment (mostly relevant for developing
LispKit).

LispKit Debug 60

15 LispKit Disjoint‐Set

Library (lispkit disjoint-set) implements disjoint sets, a mutable union-find data structure that
tracks a set of elements partitioned into disjoint subsets. Disjoint sets are based on hashtables and require
the definition of an equality and a hash function.
(disjoint-set? obj) procedure
Returns #t if obj is a disjoint set object; otherwise #f is returned.
(make-eq-disjoint-set) procedure
Returns a new empty disjoint set using eq as equality and eq-hash as hash function.
(make-eqv-disjoint-set) procedure
Returns a new empty disjoint set using eqv as equality and eqv-hash as hash function.
(make-disjoint-set comparator) procedure
(make-disjoint-set hash eql)
Returns a new empty disjoint set using eql as equality and hash as hash function. Instead of providing two
functions, a new disjoint set can also be created based on a comparator.
(disjoint-set-make dset x) procedure
Adds a new singleton set x to dset if element x does not exist already in disjoint set dset.
(disjoint-set-find dset x) procedure
(disjoint-set-find dset x default)
Looks up element x in dset and returns the set in which x is currently contained. Returns default if element
x is not found. If default is not provided, disjoint-set-find uses #f instead.
(disjoint-set-union dset x y) procedure
Unifies the sets containing x and y in disjoint set dset.
(disjoint-set-size dset) procedure
Returns the number of sets in dset.

61

16 LispKit Draw

Library (lispkit draw) provides an API for creating drawings. A drawing is defined in terms of a
sequence of instructions for drawing shapes and images. Drawings can be composed and saved as a PDF.
It is also possible to draw a drawing into a bitmap and save it in formats like PNG, JPG, or TIFF. A bitmap
is a special image that is not based on vector graphics.
Both drawings and shapes are based on a coordinate system whose zero point is in the upper left corner of
a plane. The x and y axis extend to the right and down. Coordinates and dimensions are always expressed
in terms of floating-point numbers.

16.1 Drawings

Drawings are mutable objects created via make-drawing . The functions listed in this section change the
state of a drawing object and they persist drawing instructions defining the drawing. For most functions,
the drawing is an optional argument. If it is not provided, the function applies to the drawing provided
by the current-drawing parammeter object.
current-drawing parameter object
Defines the current drawing, which is used as a default by all functions for which the drawing argument
is optional. If there is no current drawing, this parameter is set to #f .
(drawing? obj) procedure
Returns #t if obj is a drawing. Otherwise, it returns #f .
(make-drawing) procedure
Returns a new, empty drawing. A drawing consists of a sequence of drawing instructions and drawing
state consisting of the following components:
• Stroke color (set via set-color)
• Fill color (set via fill-color)
• Shadow (set via set-shadow and remove-shadow)
• Transformation (add transformation via enable-transformation and remove via disable-

transformation)
(copy-drawing drawing) procedure
Returns a copy of the given drawing.
(set-color color) procedure
(set-color color drawing)
Sets the stroke color for the given drawing, or current-drawing if the drawing argument is not pro-
vided.
(set-fill-color color) procedure
(set-fill-color color drawing)
Sets the fill color for the given drawing, or current-drawing if the drawing argument is not provided.
(set-line-width width) procedure
(set-line-width width drawing)

62

LispPad Library Reference 2020-12-23

Sets the default stroke width for the given drawing, or current-drawing if the drawing argument is not
provided.
(set-shadow color size blur-radius) procedure
(set-shadow color size blur-radius drawing)
Defines a shadow for the given drawing, or current-drawing if the drawing argument is not provided.
color is the color of the shade, blur-radius defines the radius for bluring the shadow.
(remove-shadow) procedure
(remove-shadow drawing)
Removes shadow for the subsequent drawing instructions of the given drawing, or current-drawing if
the drawing argument is missing.
(enable-transformation tf) procedure
(enable-transformation tf drawing)
Enables the transformation tf for subsequent drawing instructions of the given drawing, or current-
drawing if the drawing argument is missing. Each drawing maintains an active affine transformation for
shifting, rotating, and scaling the coordinate systems of subsequent drawing instructions.
(disable-transformation tf) procedure
(disable-transformation tf drawing)
Disables the transformation tf for subsequent drawing instructions of the given drawing, or current-
drawing if the drawing argument is missing.
(draw shape) procedure
(draw shape width)
(draw shape width drawing)
Draws shape with a given stroke width into the drawing specified via drawing or parameter object
current-drawing if drawing is not provided. The default for width, in case it is not provided, is set via
set-line-width. The stroke is drawn in the current stroke color of the drawing.
(draw-dashed shape lengths phase) procedure
(draw-dashed shape lengths phase width)
(draw-dashed shape lengths phase width drawing)
Draws shape with a dashed stroke of width width into the drawing specified via drawing or parameter
object current-drawing if drawing is not provided. 1.0 is the default for width in case it is not
provided. lengths specifies an alternating list of dash/space lengths. phase determines the start of the
dash/space pattern. The dashed stroke is drawn in the current stroke color of the drawing.
(fill shape) procedure
(fill shape drawing)
Fills shape with the current fill color in the drawing specified via drawing or parameter object current-
drawing if drawing is not provided.
(fill-gradient shape colors) procedure
(fill-gradient shape colors spec)
(fill-gradient shape colors spec drawing)
Fills shape with a gradient in the drawing specified via argument drawing or parameter object current-
drawing if drawing is not provided. The gradient is specified in terms of a list of colors and argument
spec. spec can either be a number or a point. If spec is a number, this number determines an angle for a
linear gradient. If spec is a point, it is the center of a radial gradient.
(draw-line start end) procedure
(draw-line start end drawing)

LispKit Draw 63

LispPad Library Reference 2020-12-23

Draws a line between point start and point end in the drawing specified via argument drawing or parameter
object current-drawing , if drawing is not provided. The line is drawn in the default stroke width and
the current stroke color.
(draw-rect rect) procedure
(draw-rect rect drawing)
Draws a rectangular given by rect in the drawing specified via argument drawing or parameter object
current-drawing , if drawing is not provided. The rectangular is drawn in the default stroke width and
the current stroke color.
(fill-rect rect) procedure
(fill-rect rect drawing)
Fills a rectangular given by rect with the current fill color in the drawing specified via argument drawing
or parameter object current-drawing , if drawing is not provided.
(draw-ellipse rect) procedure
(draw-ellipse rect drawing)
Draws an ellipse into the rectangular rect in the drawing specified via argument drawing or parameter
object current-drawing , if drawing is not provided. The ellipse is drawn in the default stroke width and
the current stroke color.
(fill-ellipse rect) procedure
(fill-ellipse rect drawing)
Fills an ellipse given by rectangular rect with the current fill color in the drawing specified via argument
drawing or parameter object current-drawing , if drawing is not provided.
(draw-text str location font) procedure
(draw-text str location font color)
(draw-text str location font color drawing)
Draws string str at location in the given font and color in the drawing specified by argument drawing or
parameter object current-drawing if drawing is not provided. location is either the left, top-most point
at which the string is drawn, or it is a rect specifying a bounding box. color specifies the text color. If it is
not provided, the text is drawn in black.
(text-size text) procedure
(text-size text font)
(text-size text font dimensions)
Returns a size object describing the width and height needed to draw string html using font in a space
constrained by dimensions. dimensions is either a size object specifying the maximum width and height, or
it is a number constraining the width only, assuming infinite hight. If dimensions is omitted, the maximum
width and height is infinity.
(draw-html html location) procedure
(draw-html html location drawing)
Draws a string html containing HTML source code at location in the drawing specified by argument drawing
or parameter object current-drawing if drawing is not provided. location is either the left, top-most
point at which the HTML is drawn, or it is a rect specifying a bounding box.
(html-size html) procedure
(html-size html dimensions)
Returns a size object describing the width and height needed to render the HTML in string html in a space
constrained by dimensions. dimensions is either a size object specifying the maximum width and height, or

LispKit Draw 64

LispPad Library Reference 2020-12-23

it is a number constraining the width only, assuming infinite hight. If dimensions is omitted, the maximum
width and height is infinity.
(draw-image image location) procedure
(draw-image image location opacity)
(draw-image image location opacity composition)
(draw-image image location opacity composition drawing)
Draws image image at location with the given opacity and composition method. The image is drawn in
the drawing specified by argument drawing or parameter object current-drawing if drawing is not
provided. location is either the left, top-most point at which the image is drawn, or it is a rect specifying
a bounding box for the image. composition is a floating-point number between 0.0 (= transparent) and
1.0 (= completely not transparent) with 1.0 being the default. composition refers to a symbol specifying
a composition method. The following methods are supported (the source is the image, the destination is
the drawing):
• clear : Transparency everywhere.
• copy : The source image (default).
• multiply : The source color is multiplied by the destination color.
• overlay : Source colors overlay the destination.
• source-over : The source image wherever it is opaque, and the destination elsewhere.
• source-in : The source image wherever both images are opaque, and transparent elsewhere.
• source-out : The source image wherever it is opaque and the destination is transparent, and trans-
parent elsewhere.

• source-atop : The source image wherever both source and destination are opaque, the destination
wherever it is opaque but the source image is transparent, and transparent elsewhere.

• destination-over : The destination wherever it is opaque, and the source image elsewhere.
• destination-in : The destination wherever both images are opaque, and transparent elsewhere.
• destination-out : The destination wherever it is opaque and the source image is transparent, and
transparent elsewhere.

• destination-atop : The destination wherever both image and destination are opaque, the source
image wherever it is opaque and the destination is transparent, and transparent elsehwere.

(draw-drawing other) procedure
(draw-drawing other drawing)
Draws drawing other into the drawing specified by argument drawing or parameter object current-
drawing if drawing is not provided. This function can be used to compose drawings.
(clip-drawing other clippingshape) procedure
(clip-drawing other clippingshape drawing)
Draws drawing other into the drawing specified by argument drawing or parameter object current-
drawing if drawing is not provided. This function clips the drawing using shape clippingshape; i.e. only
parts within clippingshape are drawn.
(inline-drawing other) procedure
(inline-drawing other drawing)
Draws drawing other into the drawing specified by argument drawing or parameter object current-
drawing if drawing is not provided. This function can be used to compose drawings in a way such that
the drawing instructions from other are inlined into drawing.
(save-drawing path drawing size) procedure
(save-drawing path drawing size title)
(save-drawing path drawing size title author)

LispKit Draw 65

LispPad Library Reference 2020-12-23

Saves drawing into a PDF file at the given filepath path. size is a size specifying the width and height of the
PDF page containing the drawing in points; i.e. the media box of the page is (rect zero-point size) .
title and author are optional strings defining the title and author metadata for the generated PDF file.
(save-drawings path pages) procedure
(save-drawings path pages title)
(save-drawings path pages title author)
Saves a list of pages into a PDF file at the given filepath path. A page is defined in terms of a list of two
elements (drawing size), where drawing is a drawing for that page and size is a media box for the page.
title and author are optional strings defining the title and author metadata for the generated PDF file.
(drawing body …) syntax
Creates a new empty drawing, binds parameter object current-drawing to it and executes the body
statements in the dynamic scope of this binding. This special form returns the new drawing.
(with-drawing drawing body …) syntax
Binds parameter object current-drawing to drawing and executes the body statements in the dynamic
scope of this binding. This special form returns the result of the last statement in the body.
(transform tf body …) syntax
This form is used in the context of drawing into current-drawing . It enables the transformation tf,
executes the statements in the body and disables the transformation again.

16.2 Shapes

Shapes are mutable objects created via a number of constructors, including make-shape , copy-shape
, line , polygon , rectangular , circle , oval , arc , and glyphs . Besides the constructors,
functions like move-to , line-to and curve-to are used to extend a shape. For those functions, the
affected shape is an optional argument. If it is not provided, the function applies to the shape defined by
the current-shape parammeter object.
current-shape parameter object
Defines the current shape, which is used as a default by all functions for which the shape argument is
optional. If there is no current shape, this parameter is set to #f .
(shape? obj) procedure
Returns #t if obj is a shape. Otherwise, it returns #f .
(make-shape) procedure
(make-shape prototype)
Returns a new shape object. If argument prototype is provided, the new shape object will inherit from
shape prototype; i.e. the new shape’s definition will extend the definition of shape prototype.
(copy-shape shape) procedure
Returns a copy of shape.
(line start end) procedure
Retuns a new line shape. start and end are the start and end points of the line.
(polygon point …) procedure
Returns a new polygon shape. The polygon is defined in terms of a sequence of points.
(rectangle point size) procedure
(rectangle point size radius)
(rectangle point size xradius yradius)

LispKit Draw 66

LispPad Library Reference 2020-12-23

Returns a new rectangular shape. The rectangle is defined in terms of the left, topmost point and a size
defining both width and height of the rectangle. The optional radius, xradius and yradius arguments are
used to create a rounded rectangular whose rounded edges are defined in terms of an x and y-radius. If
only one radius is provided, it defines both x and y-radius.
(circle point radius) procedure
Returns a new circle shape. The circle is defined in terms of a center point and a radius.
(oval point size) procedure
Returns a new oval shape. The oval is defined in terms of a rectangle whose left, topmost point is provided
as argument point, and whose width and height are given via argument size.
(arc point radius start end) procedure
(arc point radius start end clockwise)
Returns a new arc shape. The arc is defined via the arguments point, radius, start , end and optionally
clockwise. point is the starting point of the arc, radius defines the radius of the arc, start is a starting angle
in radians, and end is the end angle in radians. clockwise is a boolean argument defining whether the arc
is drawn clockwise or counter-clockwise. The default is #t .
(glyphs str point size font) procedure
Returns a new “glyphs” shape. This is a shape defined by a string str rendered in the given size and font
at a given point. font is a font object, size is the font size in points, and point are the start coordinates
where the glyphs are drawn.
(transform-shape shape tf) procedure
Returns a new shape derived from shape by applying transformation tf.
(flip-shape shape) procedure
(flip-shape shape box)
(flip-shape shape box orientation)
Returns a new shape by flipping/mirroring shape within box. box is a rect. If it is not provided, the
bounding box of shape is used as a default. Argument orientation is a symbol defining along which axis
the shape is flipped. Supported are horizontal , vertical , and mirror . Default is vertical .
(interpolate points) procedure
(interpolate points closed)
(interpolate points closed alpha)
(interpolate points closed alpha method)
Returns a shape interpolating a list of points. closed is an optional boolean argument specifying whether
the shape is closed. The default for closed is #f . alpha is an interpolation parameter in the range [0.0,1.0];
default is 0.33. method specifies the interpolation method via a symbol. The following two methods are
supported: hermite and catmull-rom ; default is hermite .
(move-to point) procedure
(move-to point shape)
Sets the “current point” to point for the shape specified by argument shape or parameter object current-
shape if shape is not provided.
(line-to point …) procedure
(line-to point … shape)
Creates a line from the “current point” to point for the shape specified by argument shape or parameter
object current-shape if shape is not provided. point becomes the new “current point”.
(curve-to point cntrl1 cntrl2) procedure
(curve-to point cntrl1 cntrl2 shape)

LispKit Draw 67

LispPad Library Reference 2020-12-23

Creates a curve from the “current point” to point for the shape specified by argument shape or parameter
object current-shape if shape is not provided. cntrl1 and cntrl2 are control points defining tangets
shaping the curve at the start and end points.
(relative-move-to point) procedure
(relative-move-to point shape)
This function is equivalent to move-to with the exception that point is relative to the “current point”.
(relative-line-to point …) procedure
(relative-line-to point … shape)
This function is equivalent to line-to with the exception that point is relative to the “current point”.
(relative-curve-to point cntrl1 cntrl2) procedure
(relative-curve-to point cntrl1 cntrl2 shape)
This function is equivalent to curve-to with the exception that point, cntrl1 and cntrl2 are relative to
the “current point”.
(add-shape other) procedure
(add-shape other shape)
Adds shape other to the shape specified by argument shape or parameter object current-shape if shape
is not provided. This function is typically used to compose shapes.
(shape-bounds shape) procedure
Returns the bounding box for the given shape as a rect.
(shape body …) syntax
Creates a new empty shape, binds parameter object current-shape to it and executes the body state-
ments in the dynamic scope of this binding. This special form returns the new drawing.
(with-shape shape body …) syntax
Binds parameter object current-shape to shape and executes the body statements in the dynamic scope
of this binding. This special form returns the result of the last statement in the body.

16.3 Images

Images are objects representing immutable pictures of mutable size and metadata. Images are either
loaded from image files or they are created from drawings. Images are either vector-based or bitmap-
based. The current image API only allows loading vector-based images from PDF files. Bitmap-based
images, on the other hand, can be loaded from PNG, JPG, GIF, etc. image files or they are created by
drawing a drawing object into an empty bitmap. Bitmap-based images optionally have mutable EXIF
data.
(image? obj) procedure
Returns #t if obj is an image. Otherwise, it returns #f .
(load-image path) procedure
Loads an image from the file at path and returns the corresponding image object.
(load-image-asset path type) procedure
(load-image-asset path type dir)
Loads an image from the file at the given relative file path and returns the corresponding image object.
type refers to the default suffix of the file to load (e.g. "png" for PNG images).
load-image-asset constructs a relative file path in the following way (assuming path does not have a
suffix already):

LispKit Draw 68

LispPad Library Reference 2020-12-23

dir/path.type
where dir is "Images" if it is not provided as a parameter. It then searches the asset paths in their given
order for a file matching this relative file path. Once the first matching file is found, the file is loaded as
an image file and the image gets returned by load-image-asset . It is an error if no matching image
was found.
(image-size image) procedure
Returns the size of the given image object in points.
(set-image-size! image size) procedure
Sets the size of image to size, a size in points.
(bitmap? obj) procedure
Returns #t if obj is a bitmap-based image. Otherwise, it returns #f .
(bitmap-size bmap) procedure
Returns the size of the bitmap bmap in points. If bmap is not a bitmap object, bitmap-size returns #f
.
(bitmap-pixels bmap) procedure
Returns the number of horizontal and vertical pixels of the bitmap bmap as a size. If bmap is not a bitmap
object, bitmap-size returns #f .
(bitmap-exif-data bmap) procedure
Returns the EXIF metadata associated with bitmap bmap. EXIF metadata is represented as an association
list in which symbols are used as keys.

> (define photo (load-image (asset-file-path "Regensberg" "jpeg" "Images")))
> (bitmap-exif-data photo)
((ExposureBiasValue . 0)
(CustomRendered . 6)
(SensingMethod . 2)
(SubsecTimeOriginal . "615")
(SubsecTimeDigitized . "615")
(Flash . 0)
(ExposureTime . 0.00040306328093510683)
(OffsetTime . "+01:00")
(PixelXDimension . 8066)
(ExifVersion 2 3 1)
(OffsetTimeDigitized . "+01:00")
(ISOSpeedRatings 25)
(OffsetTimeOriginal . "+01:00")
(DateTimeDigitized . "2019:10:27 14:21:39")
(FlashPixVersion 1 0)
(WhiteBalance . 0)
(PixelYDimension . 3552)
(LensSpecification 4.25 4.25 1.7999999523162842 1.7999999523162842)
(ColorSpace . 65535)
(LensModel . "iPhone XS back camera 4.25mm f/1.8")
(SceneCaptureType . 0)
(ApertureValue . 1.6959938128383605)
(SceneType . 1)
(ShutterSpeedValue . 11.276932534193945)
(FocalLength . 4.25)
(FNumber . 1.8)
(LensMake . "Apple")
(FocalLenIn35mmFilm . 26)
(BrightnessValue . 10.652484683458134)
(ComponentsConfiguration 1 2 3 0)
(MeteringMode . 5)
(DateTimeOriginal . "2019:10:27 14:21:39"))

LispKit Draw 69

LispPad Library Reference 2020-12-23

(set-bitmap-exif-data! bmap exif) procedure
Sets the EXIF metadata for the given bitmap bmap to exif. exif is an association list defining all the EXIF
attributes with symbols being used as keys.

> (define photo (load-image (asset-file-path "Regensberg" "jpeg" "Images")))
> (set-bitmap-exif-data! photo

'((ExposureBiasValue . 0)
(Flash . 0)
(ExposureTime . 0.0005)
(PixelXDimension . 8066)
(PixelYDimension . 3552)
(ExifVersion 2 3 1)
(ISOSpeedRatings 25)
(FlashPixVersion 1 0)
(WhiteBalance . 0)
(LensSpecification 4.25 4.25 1.7999999523162842 1.7999999523162842)
(ColorSpace . 65535)
(SceneCaptureType . 0)
(ApertureValue . 1.6959938128383605)
(SceneType . 1)
(ShutterSpeedValue . 11.276932534193945)
(FocalLength . 4.25)
(FNumber . 1.8)
(BrightnessValue . 10.652484683458134)
(ComponentsConfiguration 1 2 3 0)
(OffsetTime . "+01:00")
(OffsetTimeOriginal . "+01:00")
(DateTimeOriginal . "2019:10:27 14:21:39")
(OffsetTimeDigitized . "+01:00")
(DateTimeDigitized . "2019:10:27 14:21:39")))

(make-bitmap drawing size) procedure
(make-bitmap drawing size ppi)
Creates a new bitmap-based image by drawing the object drawing into an empty bitmap of size size in
points. ppi determines the number of pixels per inch. By default, ppi is set to 72. In this case, the number
of pixels of the bitmap corresponds to the number of points (since 1 pixel corresponds to 1/72 of an inch).
For a ppi value of 144, the horizontal and vertial number of pixels is doubled, etc.
(save-bitmap path bitmap format) procedure
Saves a given bitmap-based image bitmap in a file at filepath path. format is a symbol specifying the image
file format. Supported are: png , jpg , gif , bmp , and tiff .

16.4 Transformations

A transformation is an immutable object defining an affine transformation. Transformations can be used
to:
• shift,
• scale, and
• rotate coordinate systems.

Transformations are typically used in drawings to transform drawing instructions. They can also be used
to transform shapes.
(transformation? obj) procedure
Returns #t if obj is a transformation. Otherwise, it returns #f .

LispKit Draw 70

LispPad Library Reference 2020-12-23

(transformation tf …) procedure
Creates a new transformation by composing the given transformations tf.
(invert tf) procedure
Inverts transformation tf and returns a new transformation object for it.
(translate dx dy) procedure
(translate dx dy tf)
Returns a transformation for shifting the coordinate system by dx and dy. If transformation tf is provided,
the translation transformation extends tf.
(scale dx dy) procedure
(scale dx dy tf)
Returns a transformation for scaling the coordinate system by dx and dy. If transformation tf is provided,
the scaling transformation extends tf.
(rotate angle) procedure
(rotate angle tf)
Returns a transformation for rotating the coordinate system by angle (in radians). If transformation tf is
provided, the rotation transformation extends tf.

16.5 Colors

Colors are immutable objects defining colors in terms of four components: red, green, blue and alpha.
Library (lispkit draw) currently only supports RGB color spaces.
(lispkit draw) supports the concept of color lists on macOS. A color list is provided as a .plist file
and stored in the “ColorLists” asset directory of LispKit. It maps color names expressed as symbols to color
values. Color lists need to be loaded explicitly via procedure load-color-list .
(color? obj) procedure
Returns #t if obj is a color. Otherwise, it returns #f .
(color spec) procedure
(color name clist)
(color r g b)
(color r g b alpha)
This procedure returns new color objects. If spec is provided, it either is a string containing a color de-
scription in hex format, or it is a symbol referring to the name of a color in the default color list (White
Yellow Red Purple Orange Magenta Green Cyan Brown Blue Black) . If a different color list should
be used, its name can be specified via string clist. Procedure (available-color-lists) returns a list of
all available color lists. If the color is specified via a hex string, the following formats can be used: "ccc"
, "#ccc" , "rrggbb" , and "#rrggbb" .
The color can also be specified using color components r, g, b, and alpha. alpha determines the trans-
parency of the color (0.0 = fully transparent, 1.0 = no transparency). The default value for alpha is
1.0.
(color-red color) procedure
Returns the red color component of color.
(color-green color) procedure
Returns the green color component of color.

LispKit Draw 71

LispPad Library Reference 2020-12-23

(color-blue color) procedure
Returns the blue color component of color.
(color-alpha color) procedure
Returns the alpha color component of color.
(color->hex color) procedure
Returns a representation of the given color in hex form as a string.

(color->hex (color 1.0 0.5 0.1)) ⇒ "#FF801A"
(color->hex (color "#6AF")) ⇒ "#66AAFF"

black object
gray
white
red
green
blue
yellow
Predefined color objects.
(available-color-lists) procedure
Returns a list of available color lists. The LispKit installation guarantees that there is at least color list
“HTML” containing all named colors from the HTML 5 specification.

(available-color-lists)
⇒ ("HTML" "Web Safe Colors" "Crayons" "System" "Apple")

(load-color-list name path) procedure
Loads a new color list stored as a .plist file in the assets directory of LispKit at the given file path (which
can also refer to color lists outside of the assets directory via absolute file paths). name is a string which
specifies the name of the color list. It is added to the list of available colors if loading of the color list was
successful. load-color-list returns #t if the color list could be successfully loaded, #f otherwise.
(available-colors clist) procedure
Returns a list of color identifiers supported by the given color list. clist is a string specifying the name of
the color list.

(available-colors "HTML")
⇒ (YellowGreen Yellow WhiteSmoke White Wheat Violet Turquoise Tomato Thistle Teal Tan

SteelBlue Snow SlateGrey SlateGray SlateBlue SkyBlue Silver Sienna SeaShell SeaGreen
SandyBrown Salmon SaddleBrown RoyalBlue RosyBrown Red RebeccaPurple Purple PowderBlue Plum
Pink Peru PeachPuff PapayaWhip PaleVioletRed PaleTurquoise PaleGreen PaleGoldenRod Orchid
OrangeRed Orange OliveDrab Olive OldLace Navy NavajoWhite Moccasin MistyRose MintCream
MidnightBlue MediumVioletRed MediumTurquoise MediumSpringGreen MediumSlateBlue
MediumSeaGreen MediumPurple MediumOrchid MediumBlue MediumAquaMarine Maroon Magenta Linen
LimeGreen Lime LightYellow LightSteelBlue LightSlateGrey LightSlateGray LightSkyBlue
LightSeaGreen LightSalmon LightPink LightGrey LightGreen LightGray LightGoldenRodYellow
LightCyan LightCoral LightBlue LemonChiffon LawnGreen LavenderBlush Lavender Khaki Ivory
Indigo IndianRed HotPink HoneyDew Grey GreenYellow Green Gray GoldenRod Gold GhostWhite
Gainsboro Fuchsia ForestGreen FloralWhite FireBrick DodgerBlue DimGrey DimGray DeepSkyBlue
DeepPink DarkViolet DarkTurquoise DarkSlateGrey DarkSlateGray DarkSlateBlue DarkSeaGreen
DarkSalmon DarkRed DarkOrchid DarkOrange DarkOliveGreen DarkMagenta DarkKhaki DarkGrey
DarkGreen DarkGray DarkGoldenRod DarkCyan DarkBlue Cyan Crimson Cornsilk CornflowerBlue
Coral Chocolate Chartreuse CadetBlue BurlyWood Brown BlueViolet Blue BlanchedAlmond Black
Bisque Beige Azure Aquamarine Aqua AntiqueWhite AliceBlue)

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

LispKit Draw 72

LispPad Library Reference 2020-12-23

16.6 Fonts

Fonts are immutable objects defining fonts in terms of a font name and a font size (in points).
(font? obj) procedure
Returns #t if obj is a font. Otherwise, it returns #f .
(font fontname size) procedure
(font familyname size weight trait …)
If only two arguments, fontname and size, are provided, font will return a new font object for a font
with the given font name and font size (in points). If more than two arguments are provided, font will
return a new font object for a font with the given font family name, font size (in points), font weight, as
well as a number of font traits.
The weight of a font is specified as an integer on a scale from 0 to 15. Library (lispkit draw) exports
the following weight constants:
• ultralight (1)
• thin (2)
• light (3)
• book (4)
• normal (5)
• medium (6)
• demi (7)
• semi (8)
• bold (9)
• extra (10)
• heavy (11)
• super (12)
• ultra (13)
• extrablack (14)

Font traits are specified as integer masks. The following trait constants are exported from library (lisp-
kit draw) :
• italic
• boldface
• unitalic
• unboldface
• narrow
• expanded
• condensed
• small-caps
• poster
• compressed
• monospace

(font-name font) procedure
Returns the font name of font.
(font-family-name font) procedure
Returns the font family name of font.
(font-size font) procedure
Returns the font size of font in points.

LispKit Draw 73

LispPad Library Reference 2020-12-23

(font-weight font) procedure
Returns the font weight of font. See documentation of function font for details.
(font-traits font) procedure
Returns the font traits of font as an integer bitmask. See documentation of function font for details.
(font-has-traits font trait …) procedure
Returns #t if font font has all the given traits.
(available-fonts) procedure
(available-fonts trait …)
Returns all the available fonts that have matching font traits.
(available-font-families) procedure
Returns all the available font families, i.e. all font families for which there is at least one font installed.

16.7 Points

A point describes a location on a two-dimensional plane consisting of a x and y coordinate. Points are
represented as pairs of floating-point numbers where the car representes the x-coordinate and the cdr
represents the y-coordinate. Even though an expression like '(3.5 . -2.0) does represent a point, it
is recommended to always construct points via function point ; e.g. (point 3.5 -2.0) .
(point? obj) procedure
Returns #t if obj is a valid point. Otherwise, it returns #f .
(point x y) procedure
Returns a point for coordinates x and y.
(move-point point dx fy) procedure
Moves point by dx and dy and returns the result as a point.
(point-x point) procedure
Returns the x-coordinate for point.
(point-y point) procedure
Returns the y-coordinate for point.
zero-point object
The zero point, i.e (point 0.0 0.0) .

16.8 Size

A size describes the dimensions of a rectangle consisting of width and height values. Sizes are represented
as pairs of floating-point numbers where the car representes the width and the cdr represents the height.
Even though an expression like '(5.0 . 3.0) does represent a size, it is recommended to always
construct sizes via function size ; e.g. (size 5.0 3.0) .
(size? obj) procedure
Returns #t if obj is a valid size. Otherwise, it returns #f .
(size w h) procedure
Returns a size for the given width w and height h.
(size-width size) procedure
Returns the width for size.

LispKit Draw 74

LispPad Library Reference 2020-12-23

(size-height size) procedure
Returns the height for size.
(increase-size size dx dy) procedure
Returns a new size object whose width is increased by dx and whose height is increased by dy.
(scale-size size factor) procedure
Returns a new size object whose width and height is multiplied by factor.

16.9 Rects

A rect describes a rectangle in terms of an upper left point and a size. Rects are represented as pairs whose
car is a point and whose cdr is a size. Even though an expression like '((1.0 . 2.0) . (3.0 4.0))
does represent a rect, it is recommended to always construct rects via function rect ; e.g. (rect (point
1.0 2.0) (size 3.0 4.0)) .
(rect? obj) procedure
Returns #t if obj is a valid rect. Otherwise, it returns #f .
(rect point size) procedure
(rect x y width height)
Returns a rect either from the given point and size, or from x-coordinate x, y-coordinate y, width w, and
height h.
(move-rect rect dx dy) procedure
Moves rect by dx and dy and returns the result.
(rect-point rect) procedure
Returns the upper left corner point of rect.
(rect-size rect) procedure
Returns the size of the rect.
(rect-x rect) procedure
Returns the x-coordinate of the upper left corner point of rect.
(rect-y rect) procedure
Returns the y-coordinate of the upper left corner point of rect.
(rect-size rect) procedure
Returns the size of rect as a size, i.e. as a pair of floating-point numbers where the car representes the
width and the cdr represents the height of rect.
(rect-width rect) procedure
Returns the width of rect.
(rect-height rect) procedure
Returns the height of rect.

LispKit Draw 75

17 LispKit Draw Turtle

Library (lispkit draw turtle) defines a simple “turtle graphics” API. The API provides functionality
for creating turtles and for moving turtles on a plane generating drawings as a side-effect. A drawing is a
data structure defined by library (lispkit draw) .
A turtle is defined in terms of the following components: - A position (x, y) defining the coordinates where
the turtle is currently located within a coordinate system defined by parameters used to create the turtle
via make-turtle - A heading anglewhich defines the direction in degrees into which the turtle is moving
- A boolean flag pen down which, if set to #t , will make the turtle draw lines on the graphics plane when
moving. - A line width defining the width of lines drawn by the turtle - A color defining the color of lines
drawn by the turtle - A drawing which records the moves of the turtle while the pen is down.
Turtles are mutable objects created via make-turtle . The functions listed below change the state of a
turtle. In particular, they generate a drawing as a side-effect which can be accessed via turtle-drawing
. For most functions, the turtle is an optional argument. If it is not provided, the function applies to the
turtle provided by the current-turtle parammeter object.
current-turtle parameter object
Defines the current turtle, which is used as a default by all functions for which the turtle argument is
optional. If there is no current turtle, this parameter is set to #f .
(turtle? obj) procedure
Returns #t if obj is a turtle. Otherwise, it returns #f .
(make-turtle x y scale) procedure
Returns a new turtle object. x and y determine the “home point” of the turtle. This is equivalent to the
zero point of the coordinate system in which the turtle navigates. scale is a scaling factor.
(turtle-drawing turtle) procedure
Returns the drawing associated with the given turtle.
(pen-up) procedure
(pen-up turtle)
Lifts turtle from the plane. If turtle is not provided, the turtle defined by current-turtle is used.
Subsequent forward and backward operations don’t lead to lines being drawn. Only the current
coordinates are getting updated.
(pen-down) procedure
(pen-down turtle)
Drops turtle onto the plane. If turtle is not provided, the turtle defined by current-turtle is used.
Subsequent forward and backward operations will lead to lines being drawn.
(pen-color color) procedure
(pen-color color turtle)
Sets the drawing color of turtle to color. If turtle is not provided, the turtle defined by current-turtle
is used. color is a color object as defined by library (lispkit draw) .
(pen-size size) procedure
(pen-size size turtle)

76

LispPad Library Reference 2020-12-23

Sets the pen size of turtle to size. If turtle is not provided, the turtle defined by current-turtle is used.
The pen size corresponds to the width of lines drawn by forward and backward .
(home) procedure
(home turtle)
Moves turtle to its home position. If turtle is not provided, the turtle defined by current-turtle is
used.
(move x y) procedure
(move x y turtle)
Moves turtle to the position described by the coordinates x and y. If turtle is not provided, the turtle
defined by current-turtle is used.
(heading angle) procedure
(heading angle turtle)
Sets the heading of turtle to angle. If turtle is not provided, the turtle defined by current-turtle is
used. angle is expressed in terms of degrees.
(turn angle) procedure
(turn angle turtle)
Adjusts the heading of turtle by angle degrees. If turtle is not provided, the turtle defined by current-
turtle is used.
(right angle) procedure
(right angle turtle)
Adjusts the heading of turtle by angle degrees. If turtle is not provided, the turtle defined by current-
turtle is used.
(left angle) procedure
(left angle turtle)
Adjusts the heading of turtle by -angle degrees. If turtle is not provided, the turtle defined by current-
turtle is used.
(forward distance) procedure
(forward distance turtle)
Moves turtle forward by distance units drawing a line if the pen is down. If turtle is not provided, the
turtle defined by current-turtle is used.
(backward distance) procedure
(backward distance turtle)
Moves turtle backward by distance units drawing a line if the pen is down. If turtle is not provided, the
turtle defined by current-turtle is used.

LispKit Draw Turtle 77

18 LispKit Dynamic

18.1 Dynamic bindings

(make-parameter init) procedure
(make-parameter init converter)
Returns a newly allocated parameter object, which is a procedure that accepts zero arguments and returns
the value associated with the parameter object. Initially, this value is the value of (converter init) , or
of init if the conversion procedure converter is not specified. The associated value can be temporarily
changed using parameterize . The default associated value can be changed by invoking the parameter
object as a function with the new value as the only argument.
Parameter objects can be used to specify configurable settings for a computation without the need to pass
the value to every procedure in the call chain explicitly.
(parameterize ((param value) …) body) syntax
A parameterize expression is used to change the values returned by specified parameter objects param
during the evaluation of body. The param and value expressions are evaluated in an unspecified order. The
body is evaluated in a dynamic environment in which calls to the parameters return the results of passing
the corresponding values to the conversion procedure specified when the parameters were created. Then
the previous values of the parameters are restored without passing them to the conversion procedure.
The results of the last expression in the body are returned as the results of the entire parameterize
expression.

(define radix
(make-parameter 10 (lambda (x)

(if (and (exact-integer? x) (<= 2 x 16))
x
(error "invalid radix")))))

(define (f n) (number->string n (radix)))
(f 12) ⇒ "12"
(parameterize ((radix 2)) (f 12)) ⇒ "1100"
(f 12) ⇒ "12"
(radix 16)
(parameterize ((radix 0)) (f 12)) ⇒ error: invalid radix

(make-dynamic-environment) syntax
Returns a newly allocated copy of the current dynamic environment. Dynamic environments are repre-
sented as mutable hashtables.
(dynamic-environment) syntax
Returns the current dynamic environment represented as mutable hashtables.
(set-dynamic-environment! hashtable) syntax
Sets the current dynamic environment to the given dynamic environment object. Dynamic environments
are modeled as hashtables.

78

LispPad Library Reference 2020-12-23

18.2 Continuations

(continuation? obj) procedure
Returns #t if obj is a continuation procedure, #f otherwise.
(call-with-current-continuation proc) procedure
(call/cc proc)
The procedure call-with-current-continuation (or its equivalent abbreviation call/cc) packages
the current continuation as an “escape procedure” and passes it as an argument to proc. It is an error if
proc does not accept one argument.
The escape procedure is a Scheme procedure that, if it is later called, will abandon whatever continuation
is in effect at that later time and will instead use the continuation that was in effect when the escape
procedure was created. Calling the escape procedure will cause the invocation of before and after thunks
installed using dynamic-wind .
The escape procedure accepts the same number of arguments as the continuation to the original call to
call-with-current-continuation . Most continuations take only one value. Continuations created by
the call-with-values procedure (including the initialization expressions of define-values , let-
values , and let*-values expressions), take the number of values that the consumer expects. The
continuations of all non-final expressions within a sequence of expressions, such as in lambda , case-
lambda , begin , let , let* , letrec , letrec* , let-values , let*-values , let-syntax ,
letrec-syntax , parameterize , guard , case , cond , when , and unless expressions, take an
arbitrary number of values because they discard the values passed to them in any event. The effect of
passing no val- ues or more than one value to continuations that were not created in one of these ways is
unspecified.
The escape procedure that is passed to proc has unlimited extent just like any other procedure in Scheme.
It can be stored in variables or data structures and can be called as many times as desired. However, like
the raise and error procedures, it never returns to its caller.
The following examples show only the simplest ways in which call-with-current-continuation is
used. If all real uses were as simple as these examples, there would be no need for a procedure with the
power of call-with-current-continuation .

(call-with-current-continuation
(lambda (exit)

(for-each (lambda (x) (if (negative? x) (exit x)))
'(54 0 37 -3 245 19)) #t)) ⇒ -3

(define list-length
(lambda (obj)

(call-with-current-continuation
(lambda (return)

(letrec
((r (lambda (obj)

(cond ((null? obj) 0)
((pair? obj) (+ (r (cdr obj)) 1))
(else (return #f))))))

(r obj))))))
(list-length '(1 2 3 4)) ⇒ 4
(list-length '(a b . c)) ⇒ #f

(dynamic-wind before thunk after) procedure
Calls thunkwithout arguments, returning the result(s) of this call. before and after are called, also without
arguments, as required by the following rules. Note that, in the absence of calls to continuations captured
using call-with-current-continuation , the three arguments are called once each, in order. before is
called whenever execution enters the dynamic extent of the call to thunk and after is called whenever it

LispKit Dynamic 79

LispPad Library Reference 2020-12-23

exits that dynamic extent. The dynamic extent of a procedure call is the period between when the call is
initiated and when it returns. The before and after thunks are called in the same dynamic environment as
the call to dynamic-wind . In Scheme, because of call-with-current-continuation , the dynamic
extent of a call is not always a single, connected time period. It is defined as follows:
• The dynamic extent is entered when execution of the body of the called procedure begins.
• The dynamic extent is also entered when execution is not within the dynamic extent and a continua-
tion is invoked that was captured (using call-with-current-continuation) during the dynamic
extent.

• It is exited when the called procedure returns.
• It is also exited when execution is within the dynamic extent and a continuation is invoked that was
captured while not within the dynamic extent.

If a second call to dynamic-wind occurs within the dynamic extent of the call to thunk and then a
continuation is invoked in such a way that the afters from these two invocations of dynamic-wind are
both to be called, then the after associated with the second (inner) call to dynamic-wind is called first.
If a second call to dynamic-wind occurs within the dynamic extent of the call to thunk and then a
continuation is invoked in such a way that the befores from these two invocations of dynamic-wind are
both to be called, then the before associated with the first (outer) call to dynamic-wind is called first.
If invoking a continuation requires calling the before from one call to dynamic-wind and the after from
another, then the after is called first.
The effect of using a captured continuation to enter or exit the dynamic extent of a call to before or after
is unspecified.

(let ((path ’())
(c #f))

(let ((add (lambda (s)
(set! path (cons s path)))))

(dynamic-wind
(lambda () (add 'connect))
(lambda () (add (call-with-current-continuation

(lambda (c0) (set! c c0) 'talk1))))
(lambda () (add 'disconnect)))

(if (< (length path) 4)
(c 'talk2)
(reverse path))))

⇒ (connect talk1 disconnect connect talk2 disconnect)

(unwind-protect body cleanup …) syntax
Executes expression body guaranteeing that statements cleanup … are executed when body’s execution is
finished or when an exception is thrown during the execution of body. unwind-protect returns the
result of executing body.
(return obj) procedure
Returns to the top-level of the read-eval-print loop with obj as the result (or terminates the program with
obj as its return value).

18.3 Exceptions

(with-exception-handler handler thunk) procedure
The with-exception-handler procedure returns the results of invoking thunk. handler is installed as
the current exception handler in the dynamic environment used for the invocation of thunk. It is an error
if handler does not accept one argument. It is also an error if thunk does not accept zero arguments.

LispKit Dynamic 80

LispPad Library Reference 2020-12-23

(call-with-current-continuation
(lambda (k)

(with-exception-handler
(lambda (x)

(display "condition: ")(write x)(newline)(k 'exception))
(lambda ()
(+ 1 (raise 'an-error)))))) ⇒ exception; prints "condition: an-error"

(with-exception-handler
(lambda (x) (display "something went wrong\n"))
(lambda () (+ 1 (raise 'an-error)))) ⇒ prints "something went wrong"

After printing, the second example then raises another exception: “exception handler returned”.
(try thunk) procedure
(try thunk handler)
try executes argument-less procedure thunk and returns the result as the result of try if thunk’s execu-
tion completes normally. If an exception is thrown, procedure handler is called with the exception object
as its argument. The result of executing handler is returned by try.
(guard (var cond-clause …) body) syntax
The body is evaluated with an exception handler that binds the raised object to var and, within the scope
of that binding, evaluates the clauses as if they were the clauses of a cond expression. That implicit cond
expression is evaluated with the continuation and dynamic environment of the guard expression. If every
cond-clause’s test evaluates to #f and there is no “else” clause, then raise-continuable is invoked on
the raised object within the dynamic environment of the original call to raise or raise-continuable
, except that the current exception handler is that of the guard expression.
Please note that each cond-clause is as in the specification of cond .

(guard (condition
((assq ’a condition) => cdr)
((assq ’b condition)))

(raise (list (cons ’a 42)))) ⇒ 42
(guard (condition

((assq ’a condition) => cdr)
((assq ’b condition)))

(raise (list (cons ’b 23)))) ⇒ (b . 23)

(make-error message irrlist) procedure
Returns a newly allocated custom error object consisting of message as its error message and the list of
irritants irrlist.
(make-assertion-error procname expr) procedure
Returns a newly allocated assertion error object referring to a procedure of name procname and an ex-
pression expr which triggered the assertion. Assertion errors that were raised should never be caught as
they indicate a violation of an invariant.
(raise obj) procedure
Raises an exception by invoking the current exception handler on obj. The handler is called with the
same dynamic environment as that of the call to raise , except that the current exception handler is the
one that was in place when the handler being called was installed. If the handler returns, a secondary
exception is raised in the same dynamic environment as the handler. The relationship between obj and
the object raised by the secondary exception is unspecified.
(raise-continuable obj) procedure
Raises an exception by invoking the current exception handler on obj. The handler is called with the same
dynamic environment as the call to raise-continuable , except that: (1) the current exception handler

LispKit Dynamic 81

LispPad Library Reference 2020-12-23

is the one that was in place when the handler being called was installed, and (2) if the handler being
called returns, then it will again become the current exception handler. If the handler returns, the values
it returns become the values returned by the call to raise-continuable .

(with-exception-handler
(lambda (con)

(cond ((string? con) (display con))
(else (display "a warning has been issued")))

42)
(lambda ()

(+ (raise-continuable "should be a number") 23)))
prints: should be a number

⇒ 65

(error message obj …) procedure
Raises an exception as if by calling raise on a newly allocated error object which encapsulates the
information provided by message, as well as any obj, known as the irritants. The procedure error-
object? must return #t on such objects. message is required to be a string.

(define (null-list? l)
(cond ((pair? l) #f)

((null? l) #t)
(else (error "null-list?: argument out of domain" l))))

(assertion expr) procedure
Raises an exception as if by calling raise on a newly allocated assertion error object encapsulating expr
as the expression which triggered the assertion failure and the current procedure’s name. Assertion errors
that are raised via assertion should never be caught as they indicate a violation of a critical invariant.

(define (null-list? l)
(cond ((pair? l) #f)

((null? l) #t)
(else (assertion '(list? l)))))

(assert expr0 expr1 …) syntax
Executes expr0, expr1, … in the given order and raises an assertion error as soon as the first expression is
evaluating to #f . The raised assertion error encapsulates the expression that evaluated to #f and the
name of the procedure in which the assert statement was placed.

(define (drop-elements xs n)
(assert (list? xs) (fixnum? n) (not (negative? n)))
(if (or (null? xs) (zero? n)) xs (drop-elements (cdr xs) (fx1- n))))

(error-object? obj) procedure
Returns #t if obj is an error object, #f otherwise. Error objects are either implicitly created via error
or they are created explicitly with procedure make-error .
(error-object-message err) procedure
Returns the message (which is a string) encapsulated by the error object err.
(error-object-irritants err) procedure
Returns a list of the irritants encapsulated by the error object err.
(error-object-stacktrace err) procedure
Returns a list of procedures representing the stack trace encapsulated by the error object err. The stack

LispKit Dynamic 82

LispPad Library Reference 2020-12-23

trace reflects the currently active procedures at the time the error object was created (either implicitly via
error or explicitly via make-error).
(read-error? obj) procedure
This error type predicate returns #t if obj is an error object raised by the read procedure; otherwise, it
returns #f .
(file-error? obj) procedure
This error type predicate returns #t if obj is an error object raised by the inability to open an input or
output port on a file; otherwise, it returns #f .

18.4 Exiting

(exit) procedure
(exit obj)
Runs all outstanding dynamic-wind after procedures, terminates the running program, and communi-
cates an exit value to the operating system. If no argument is supplied, or if obj is #t , the exit procedure
should communicate to the operating system that the program exited normally. If obj is #f , the exit
procedure will communicate to the operating system that the program exited abnormally. Otherwise,
exit should translate obj into an appropriate exit value for the operating system, if possible. The exit
procedure must not signal an exception or return to its continuation.
(emergency-exit) procedure
(emergency-exit obj)
Terminates the program without running any outstanding dynamic-wind “after procedures” and com-
municates an exit value to the operating system in the same manner as exit .

LispKit Dynamic 83

19 LispKit Enum

Library (lispkit enum) provides an implementation of enumerated values and sets of enumerated
values based on the API defined by R6RS.
Enumerated values are represented by ordinary symbols, while finite sets of enumerated values form a
separate type, known as enumeration set. The enumeration sets are further partitioned into sets that
share the same universe and enumeration type. These universes and enumeration types are created by
the make-enumeration procedure. Each call to that procedure creates a new enumeration type.
In the descriptions of the following procedures, enum-set ranges over the enumeration sets, which are
defined as the subsets of the universes that can be defined using make-enumeration .
(make-enumeration symbol-list) procedure
Argument symbol-list must be a list of symbols. The make-enumeration procedure creates a new enu-
meration type whose universe consists of those symbols (in canonical order of their first appearance in
the list) and returns that universe as an enumeration set whose universe is itself and whose enumeration
type is the newly created enumeration type.
(enum-set-universe enum-set) procedure
Returns the set of all symbols that comprise the universe of its argument enum-set, as an enumeration
set.
(enum-set-indexer enum-set) procedure
Returns a unary procedure that, given a symbol that is in the universe of enum-set, returns its 0-origin
index within the canonical ordering of the symbols in the universe; given a value not in the universe, the
unary procedure returns #f .

(let* ((e (make-enumeration '(red green blue)))
(i (enum-set-indexer e)))

(list (i 'red) (i 'green) (i 'blue) (i 'yellow)))
⇒ (0 1 2 #f)

The enum-set-indexer procedure could be defined as follows using the memq procedure:

(define (enum-set-indexer set)
(let* ((symbols (enum-set->list (enum-set-universe set)))

(cardinality (length symbols)))
(lambda (x)

(cond ((memq x symbols) =>
(lambda (probe) (- cardinality (length probe))))

(else #f)))))

(enum-set-constructor enum-set) procedure
Returns a unary procedure that, given a list of symbols that belong to the universe of enum-set, returns a
subset of that universe that contains exactly the symbols in the list. The values in the list must all belong
to the universe.
(enum-set->list enum-set) procedure
Returns a list of the symbols that belong to its argument, in the canonical order of the universe of enum-
set.

84

LispPad Library Reference 2020-12-23

(let* ((e (make-enumeration '(red green blue)))
(c (enum-set-constructor e)))

(enum-set->list (c '(blue red))))
⇒ (red blue)

(enum-set-member? symbol enum-set) procedure
(enum-set-subset? enum-set1 enum-set2)
(enum-set=? enum-set1 enum-set2)
The enum-set-member? procedure returns #t if its first argument is an element of its second argument,
#f otherwise.
The enum-set-subset? procedure returns #t if the universe of enum-set1 is a subset of the universe
of enum-set2 (considered as sets of symbols) and every element of enum-set1 is a member of enum-set2.
It returns #f otherwise.
The enum-set=? procedure returns #t if enum-set1 is a subset of enum-set2 and vice versa, as de-
termined by the enum-set-subset? procedure. This implies that the universes of the two sets are
equal as sets of symbols, but does not imply that they are equal as enumeration types. Otherwise, #f is
returned.

(let* ((e (make-enumeration '(red green blue)))
(c (enum-set-constructor e)))

(list (enum-set-member? 'blue (c '(red blue)))
(enum-set-member? 'green (c '(red blue)))
(enum-set-subset? (c '(red blue)) e)
(enum-set-subset? (c '(red blue)) (c '(blue red)))
(enum-set-subset? (c '(red blue)) (c '(red)))
(enum-set=? (c '(red blue)) (c '(blue red)))))

⇒ (#t #f #t #t #f #t)

(enum-set-union enum-set1 enum-set2) procedure
(enum-set-intersection enum-set1 enum-set2)
(enum-set-difference enum-set1 enum-set2)
Arguments enum-set1 and enum-set2 must be enumeration sets that have the same enumeration type.
The enum-set-union procedure returns the union of enum-set1 and enum-set2. The enum-set-
intersection procedure returns the intersection of enum-set1 and enum-set2. The enum-set-
difference procedure returns the difference of enum-set1 and enum-set2.

(let* ((e (make-enumeration '(red green blue)))
(c (enum-set-constructor e)))

(list (enum-set->list (enum-set-union (c '(blue)) (c '(red))))
(enum-set->list
(enum-set-intersection (c '(red green)) (c '(red blue))))

(enum-set->list
(enum-set-difference (c '(red green)) (c '(red blue))))))

⇒ ((red blue) (red) (green))

(enum-set-complement enum-set) procedure
Returns enum-set’s complement with respect to its universe.

(let* ((e (make-enumeration '(red green blue)))
(c (enum-set-constructor e)))

(enum-set->list (enum-set-complement (c '(red)))))
⇒ (green blue)

LispKit Enum 85

LispPad Library Reference 2020-12-23

(enum-set-projection enum-set1 enum-set2) procedure
Projects enum-set1 into the universe of enum-set2, dropping any elements of enum-set1 that do not belong
to the universe of enum-set2. If enum-set1 is a subset of the universe of its second, no elements are dropped,
and the injection is returned.

(let ((e1 (make-enumeration '(red green blue black)))
(e2 (make-enumeration '(red black white))))

(enum-set->list (enum-set-projection e1 e2))))
⇒ (red black)

(define-enumeration type-name (symbol …) constructor) syntax
The define-enumeration form defines an enumeration type and provides two macros for constructing
its members and sets of its members. A define-enumeration form is a definition and can appear
anywhere any other definition can appear.
type-name is an identifier that is bound as a syntactic keyword; symbol … are the symbols that comprise
the universe of the enumeration (in order).
(type-name symbol) checks whether the name of symbol is in the universe associated with type-name. If
it is, (type-name symbol) is equivalent to symbol. It is a syntax violation if it is not.
constructor is an identifier that is bound to a syntactic form that, given any finite sequence of the symbols
in the universe, possibly with duplicates, expands into an expression that evaluates to the enumeration
set of those symbols.
(constructor symbol …) checks whether every … is in the universe associated with type-name. It is a
syntax violation if one or more is not. Otherwise (constructor symbol> …) is equivalent to ((enum-
set-constructor (constructor-syntax)) '(symbol …)) .
Here is a complete example:

(define-enumeration color (black white purple maroon) color-set)
(color black) ⇒ black
(color purpel) ⇒ error: symbol not in enumeration universe
(enum-set->list (color-set)) ⇒ ()
(enum-set->list

(color-set maroon white)) ⇒ (white maroon)

LispKit Enum 86

20 LispKit Gvector

This library defines an API for growable vectors. Just like regular vectors, growable vectors are heteroge-
neous sequences of elements which are indexed by a range of integers. Unlike for regular vectors, the
length of a growable vector is not fixed. Growable vectors may expand or shrink in length. Nevertheless,
growable vectors are fully compatible to regular vectors and all operations from library (lispkit vec-
tor) may also be used in combination with growable vectors. The main significance of library (lispkit
gvector) is in providing functions to construct growable vectors. Growable vectors are always mutable
by design.
Just like for vectors with a fixed length, the valid indexes of a growable vector are the exact, non-negative
integers less than the length of the vector. The first element in a vector is indexed by zero, and the last
element is indexed by one less than the length of the growable vector.
Two growable vectors are equal? if they have the same length, and if the values in corresponding slots
of the vectors are equal? . A growable vector is never equal? a regular vector of fixed length.
Growable vectors are written using the notation #g(obj ...) . For example, a growable vector of initial
length 3 containing the number one as element 0, the list (8 16 32) as element 1, and the string “Scheme”
as element 2 can be written as follows: #g(1 (8 16 32) "Scheme") .
Growable vector constants are self-evaluating, so they do not need to be quoted in programs.

20.1 Predicates

(gvector? obj) procedure
Returns #t if obj is a growable vector; otherwise returns #f .
(gvector-empty? obj) procedure
Returns #t if obj is a growable vector of length zero; otherwise returns #f .

20.2 Constructors

(make-gvector) procedure
(make-gvector c)
Returns a newly allocated growable vector of capacity c. The capacity is used to pre-allocate space for up
to c elements.
(gvector obj …) procedure
Returns a newly allocated growable vector whose elements contain the given arguments.

(gvector ’a ’b ’c) ⇒ #g(a b c)

(list->gvector list) procedure
The list->gvector procedure returns a newly created growable vector initialized to the elements of
the list list in the order of the list.

87

LispPad Library Reference 2020-12-23

(list->gvector ’(a b c)) ⇒ #g(a b c)

(vector->gvector vector) procedure
Returns a newly allocated growable vector initialized to the elements of the vector vector in the order of
vector.
(gvector-copy vector) procedure
(gvector-copy vector start)
(gvector-copy vector start end)
Returns a newly allocated copy of the elements of the given growable vector between start and end, but
excluding the element at index end. The elements of the new vector are the same (in the sense of eqv?
) as the elements of the old.
(gvector-append vector …) procedure
Returns a newly allocated growable vector whose elements are the concatenation of the elements of the
given vectors.

(gvector-append #(a b c) #g(d e f)) ⇒ #g(a b c d e f)

(gvector-concatenate vector xs) procedure
Returns a newly allocated growable vector whose elements are the concatenation of the elements of the
vectors in xs. xs is a proper list of vectors.

(gvector-concatenate '(#g(a b c) #(d) #g(e f))) ⇒ #g(a b c d e f)

(gvector-map f vector1 vector2 …) procedure
Constructs a new growable vector of the shortest size of the vector arguments vector1, vector2, etc. Each
element at index i of the new vector is mapped from the old vectors by (f (vector-ref vector1 i)
(vector-ref vector2 i) ...) . The dynamic order of the application of f is unspecified.

(gvector-map + #(1 2 3 4 5) #g(10 20 30 40)) ⇒ #g(11 22 33 44)

(gvector-map/index f vector1 vector2 …) procedure
Constructs a new growable vector of the shortest size of the vector arguments vector1, vector2, etc. Each
element at index i of the new vector is mapped from the old vectors by (f i (vector-ref vector1 i)
(vector-ref vector2 i) ...) . The dynamic order of the application of f is unspecified.

(gvector-map/index (lambda (i x y) (cons i (+ x y))) #g(1 2 3) #(10 20 30)) ⇒ #g((0 . 11) (1 .
22) (2 . 33))↪

20.3 Iterating over vector elements

(gvector-for-each f vector1 vector2 …) procedure
gvector-for-each implements a simple vector iterator: it applies f to the corresponding list of parallel
elements from vectors vector1 vector2 … in the range [0, length), where length is the length of the smallest
vector argument passed. In contrast with gvector-map , f is reliably applied to each subsequent element,
starting at index 0, in the vectors.

LispKit Gvector 88

LispPad Library Reference 2020-12-23

(gvector-for-each (lambda (x) (display x) (newline))
#g("foo" "bar" "baz" "quux" "zot"))

⇒
foo
bar
baz
quux
zot

(gvector-for-each/index f vector1 vector2 …) procedure
gvector-for-each/index implements a simple vector iterator: it applies f to the index i and the corre-
sponding list of parallel elements from vector1 vector2… in the range [0, length), where length is the length
of the smallest vector argument passed. The only difference to gvector-for-each is that gvector-
for-each/index always passes the current index as the first argument of f in addition to the elements
from the vectors vector1 vector2 ….

(gvector-for-each/index
(lambda (i x) (display i)(display ": ")(display x)(newline))
#g("foo" "bar" "baz" "quux" "zot"))

⇒
0: foo
1: bar
2: baz
3: quux
4: zot

20.4 Managing vector state

(gvector-length vector) procedure
Returns the number of elements in growable vector vector as an exact integer.
(gvector-ref vector k) procedure
The gvector-ref procedure returns the contents of element k of vector. It is an error if k is not a valid
index of vector or if vector is not a growable vector.

(gvector-ref ’#g(1 1 2 3 5 8 13 21) 5) ⇒ 8
(gvector-ref ’#g(1 1 2 3 5 8 13 21) (exact (round (* 2 (acos -1))))) ⇒ 13

(gvector-set! vector k obj) procedure
The vector-set! procedure stores obj in element k of growable vector vector. It is an error if k is not a
valid index of vector or if vector is not a growable vector.

(let ((vec (gvector 0 '(2 2 2 2) "Anna")))
(gvector-set! vec 1 '("Sue" "Sue"))
vec)
⇒ #g(0 ("Sue" "Sue") "Anna")

(gvector-add! vector obj …) procedure
Appends the values obj, … to growable vector vector. This increases the length of the growable vector by
the number of obj arguments.

LispKit Gvector 89

LispPad Library Reference 2020-12-23

(let ((vec (gvector 0 '(2 2 2 2) "Anna")))
(gvector-add! vec "Micha")
vec)
⇒ #g(0 (2 2 2 2) "Anna" "Micha")

(gvector-insert! vector k obj) procedure
Inserts the value obj into growable vector vector at index k. This increases the length of the growable
vector by one.

(let ((vec (gvector 0 '(2 2 2 2) "Anna")))
(gvector-insert! vec 1 "Micha")
vec)
⇒ #g(0 "Micha" (2 2 2 2) "Anna")

(gvector-remove! vector k) procedure
Removes the element at index k from growable vector vector. This decreases the length of the growable
vector by one.

(let ((vec (gvector 0 '(2 2 2 2) "Anna")))
(gvector-remove! vec 1)
vec)
⇒ #g(0 "Anna")

(gvector-remove-last! vector) procedure
Removes the last element of the growable vector vector. This decreases the length of the growable vector
by one.

(let ((vec (gvector 0 '(2 2 2 2) "Anna")))
(gvector-remove-last! vec)
vec)
⇒ #g(0 (2 2 2 2))

20.5 Destructive growable vector operations

Procedures which operate only on a part of a growable vector specify the applicable range in terms of an
index interval [start; end[; i.e. the end index is always exclusive.
(gvector-copy! to at from) procedure
(gvector-copy! to at from start)
(gvector-copy! to at from start end)
Copies the elements of vector from between start and end to growable vector to, starting at at. The order
in which elements are copied is unspecified, except that if the source and destination overlap, copying
takes place as if the source is first copied into a temporary vector and then into the destination. start
defaults to 0 and end defaults to the length of vector.
It is an error if at is less than zero or greater than the length of to. It is also an error if (- (gvector-
length to) at) is less than (- end start) .

(define a (vector 1 2 3 4 5))
(define b (gvector 10 20 30 40 50))
(gvector-copy! b 1 a 0 2)
b ⇒ #g(10 1 2 40 50)

LispKit Gvector 90

LispPad Library Reference 2020-12-23

(gvector-append! vector v1 …) procedure
Appends the elements of the vectors v1 … to the growable vector vector in the given order.
(gvector-reverse! vector) procedure
(gvector-reverse! vector start)
(gvector-reverse! vector start end)
Procedure gvector-reverse! destructively reverses the contents of growable vector between start and
end. start defaults to 0 and end defaults to the length of vector.

(define a (gvector 1 2 3 4 5))
(vector-reverse! a)
a ⇒ #g(5 4 3 2 1)

(gvector-sort! pred vector) procedure
Procedure gvector-sort! destructively sorts the elements of growable vector vector using the “less
than” predicate pred.

(define a (gvector 7 4 9 1 2 8 5))
(gvector-sort! < a)
a ⇒ #g(1 2 4 5 7 8 9)

(gvector-map! f vector1 vector2 …) procedure
Similar to gvector-map which maps the various elements into a new vector via function f, procedure
gvector-map! destructively inserts the mapped elements into growable vector vector1. The dynamic
order in which f gets applied to the elements is unspecified.

(define a (gvector 1 2 3 4))
(gvector-map! + a #(10 20 30))
a ⇒ #g(11 22 33 4)

(gvector-map/index! f vector1 vector2 …) procedure
Similar to gvector-map/index which maps the various elements together with their index into a new
vector via function f, procedure gvector-map/index! destructively inserts the mapped elements into
growable vector vector1. The dynamic order in which f gets applied to the elements is unspecified.

(define a #g(1 2 3 4))
(gvector-map/index! (lambda (i x y) (cons i (+ x y))) a #(10 20 30))
a ⇒ #g((0 . 11) (1 . 22) (2 . 33) 4)

20.6 Converting growable vectors

(gvector->list vector) procedure
(gvector->list vector start)
(gvector->list vector start end)
The gvector->list procedure returns a newly allocated list of the objects contained in the elements of
growable vector between start and end in the same order as in vector.

(gvector->list ’#g(dah dah didah)) ⇒ (dah dah didah)
(gvector->list ’#g(dah dah didah) 1 2) ⇒ (dah)

LispKit Gvector 91

LispPad Library Reference 2020-12-23

(gvector->vector vector) procedure
(gvector->vector vector start)
(gvector->vector vector start end)
The gvector->list procedure returns a newly allocated list of the objects contained in the elements of
growable vector vector between start and end in the same order as in vector.

(gvector->list ’#(dah dah didah)) ⇒ error since the argument is not a gvector
(gvector->list ’#g(dah dah didah) 1 2) ⇒ (dah)

LispKit Gvector 92

21 LispKit Hashtable

Library (lispkit hashtable) provides a native implementation of hashtables based on the API defined
by R6RS.
A hashtable is a data structure that associates keys with values. Any object can be used as a key, provided
a hash function and a suitable equivalence function is available. A hash function is a procedure that maps
keys to exact integer objects. It is the programmer’s responsibility to ensure that the hash function is
compatible with the equivalence function, which is a procedure that accepts two keys and returns true if
they are equivalent and #f otherwise. Standard hashtables for arbitrary objects based on the eq? , eqv?
, and equal? predicates are provided. Also, hash functions for arbitrary objects, strings, and symbols
are included.
The specification below uses the hashtable parameter name for arguments that must be hashtables, and
the key parameter name for arguments that must be hashtable keys.

21.1 Constructors

(make-eq-hashtable) procedure
(make-eq-hashtable k)
Returns a newly allocated mutable hashtable that accepts arbitrary objects as keys and compares those
keys with eq? . If an argument is given, the initial capacity of the hashtable is set to approximately k
elements.
(make-eqv-hashtable) procedure
(make-eqv-hashtable k)
Returns a newly allocated mutable hashtable that accepts arbitrary objects as keys and compares those
keys with eqv? . If an argument is given, the initial capacity of the hashtable is set to approximately k
elements.
(make-equal-hashtable) procedure
(make-equal-hashtable k)
Returns a newly allocated mutable hashtable that accepts arbitrary objects as keys and compares those
keys with equal? . If an argument is given, the initial capacity of the hashtable is set to approximately k
elements.
(make-hashtable hash equiv) procedure
(make-hashtable hash equiv k)
Returns a newly allocated mutable hashtable using hash as the hash function and equiv as the equivalence
function for comparing keys. If a third argument k is given, the initial capacity of the hashtable is set to
approximately k elements.
hash and equiv must be procedures. hash should accept a key as an argument and should return a non-
negative exact integer object. equiv should accept two keys as arguments and return a single boolean
value. Neither procedure should mutate the hashtable returned by make-hashtable . Both hash and
equiv should behave like pure functions on the domain of keys. For example, the string-hash and

93

LispPad Library Reference 2020-12-23

string=? procedures are permissible only if all keys are strings and the contents of those strings are
never changed so long as any of them continues to serve as a key in the hashtable. Furthermore, any pair
of keys for which equiv returns true should be hashed to the same exact integer objects by hash.
(alist->eq-hashtable alist) procedure
(alist->eq-hashtable alist k)
Returns a newly allocated mutable hashtable consisting of the mappings contained in the association list
alist. Keys are compared with eq? . If argument k is given, the capacity of the returned hashtable is set
to at least k elements.
(alist->eqv-hashtable alist) procedure
(alist->eqv-hashtable alist k)
Returns a newly allocated mutable hashtable consisting of the mappings contained in the association list
alist. Keys are compared with eqv? . If argument k is given, the capacity of the returned hashtable is set
to at least k elements.
(alist->equal-hashtable alist) procedure
(alist->equal-hashtable alist k)
Returns a newly allocated mutable hashtable consisting of the mappings contained in the association list
alist. Keys are compared with equal? . If argument k is given, the capacity of the returned hashtable is
set to at least k elements.
(hashtable-copy hashtable) procedure
(hashtable-copy hashtable mutable)
Returns a copy of hashtable. If the mutable argument is provided and is true, the returned hashtable is
mutable; otherwise it is immutable.
(hashtable-empty-copy hashtable) procedure
Returns a new mutable hashtable that uses the same hash and equivalence functions like hashtable.

21.2 Type tests

(hashtable? obj) procedure
Returns #t if obj is a hashtable. Otherwise, it returns #f .
(eq-hashtable? obj) procedure
Returns #t if obj is a hashtable which uses eq? for comparing keys. Otherwise, it returns #f .
(eqv-hashtable? obj) procedure
Returns #t if obj is a hashtable which uses eqv? for comparing keys. Otherwise, it returns #f .
(equal-hashtable? obj) procedure
Returns #t if obj is a hashtable which uses equal? for comparing keys. Otherwise, it returns #f .

21.3 Inspection

(hashtable-equivalence-function hashtable) procedure
Returns the equivalence function used by hashtable to compare keys. For hashtables created with make-
eq-hashtable , make-eqv-hashtable , and make-equal-hashtable , returns eq? , eqv? , and
equal? respectively.

LispKit Hashtable 94

LispPad Library Reference 2020-12-23

(hashtable-hash-function hashtable) procedure
(hashtable-hash-function hashtable force?)
Returns the hash function used by hashtable. For hashtables created by make-eq-hashtable and make-
eqv-hashtable , #f is returned. This behavior can be disabled if boolean parameter force? is being
provided and set to #t . In this case, hashtable-hash-function will also return hash functions for eq
and eqv -based hashtables.
(hashtable-mutable? hashtable) procedure
Returns #t if hashtable is mutable, otherwise #f .

21.4 Hash functions

The equal-hash , string-hash , and string-ci-hash procedures are acceptable as the hash functions
of a hashtable only, if the keys on which they are called are not mutated while they remain in use as keys
in the hashtable.
(equal-hash obj) procedure
Returns an integer hash value for obj, based on its structure and current contents. This hash function is
suitable for use with equal? as an equivalence function. Like equal? , the equal-hash procedure
must always terminate, even if its arguments contain cycles.
(eqv-hash obj) procedure
Returns an integer hash value for obj, based on obj’s identity. This hash function is suitable for use with
eqv? as an equivalence function.
(eq-hash obj) procedure
Returns an integer hash value for obj, based on obj’s identity. This hash function is suitable for use with
eq? as an equivalence function.
(boolean-hash b) procedure
Returns an integer hash value for boolean b.
(char-hash ch) procedure
Returns an integer hash value for character ch. This hash function is suitable for use with char=? as an
equivalence function.
(char-ci-hash ch) procedure
Returns an integer hash value for character ch, ignoring case. This hash function is suitable for use with
char-ci=? as an equivalence function.
(string-hash str) procedure
Returns an integer hash value for string str, based on its current characters. This hash function is suitable
for use with string=? as an equivalence function.
(string-ci-hash str) procedure
Returns an integer hash value for string str based on its current characters, ignoring case. This hash
function is suitable for use with string-ci=? as an equivalence function.
(symbol-hash sym) procedure
Returns an integer hash value for symbol sym.
(number-hash x) procedure
Returns an integer hash value for numeric value x.
(combine-hash h …) procedure
Combines the integer hash values h … into a single hash value.

LispKit Hashtable 95

LispPad Library Reference 2020-12-23

21.5 Procedures

(hashtable-size hashtable) procedure
Returns the number of keys contained in hashtable as an exact integer object.
(hashtable-load hashtable) procedure
Returns the load factor of the hashtable. The load factor is defined as the ratio between the number of
keys and the number of hash buckets of hashtable.
(hashtable-ref hashtable key default) procedure
Returns the value in hashtable associated with key. If hashtable does not contain an association for key,
default is returned.
(hashtable-get hashtable key) procedure
Returns a pair consisting of a key matching key and associated value from hashtable. If hashtable does not
contain an association for key, hashtable-get returns #f .
For example, for a hashtable ht containing the mapping 3 to "three" , (hashtable-get ht 3) will
return (3 . "three") .
(hashtable-set! hashtable key obj) procedure
Changes hashtable to associate keywith obj, adding a new association or replacing any existing association
for key.
(hashtable-delete! hashtable key) procedure
Removes any association for key within hashtable.
(hashtable-add! hashtable key obj) procedure
Changes hashtable to associate key with obj, adding a new association for key. The difference to
hashtable-set! is that existing associations of key will remain in hashtable, whereas hashtable-set!
replaces an existing association for key.
(hashtable-remove! hashtable key) procedure
Removes the association for key within hashtable which was added last, and returns it as a pair consisting
of the key matching key and its associated value. If there is no association of key in hashtable, hashtable-
remove! will return #f .
(alist->hashtable! hashtable alist) procedure
Adds all the associations from alist to hashtable using hashtable-add! .
(hashtable-contains? hashtable key) procedure
Returns #t if hashtable contains an association for key, #f otherwise.
(hashtable-update! hashtable key proc default) procedure
hashtable-update! applies proc to the value in hashtable associated with key, or to default if hashtable
does not contain an association for key. The hashtable is then changed to associate key with the value
returned by proc. proc is a procedure which should accept one argument, it should return a single value,
and should not mutate hashtable. The behavior of hashtable-update! is equivalent to the following
code:

(hashtable-set! hashtable
key
(proc (hashtable-ref hashtable key default)))

(hashtable-clear! hashtable) procedure
(hashtable-clear! hashtable k)
Removes all associations from hashtable. If a second argument k is given, the current capacity of the
hashtable is reset to approximately k elements.

LispKit Hashtable 96

LispPad Library Reference 2020-12-23

(hashtable-keys hashtable) procedure
Returns an immutable vector of all keys in hashtable.
(hashtable-values hashtable) procedure
Returns an immutable vector of all values in hashtable.
(hashtable-entries hashtable) procedure
Returns two values, an immutable vector of the keys in hashtable, and an immutable vector of the corre-
sponding values.
(hashtable-key-list hashtable) procedure
Returns a list of all keys in hashtable.
(hashtable-value-list hashtable) procedure
Returns a list of all values in hashtable.
(hashtable->alist hashtable) procedure
Returns a list of all associations in hashtable as an association list. Each association is represented as a
pair consisting of the key and the corresponding value.
(hashtable-for-each proc hashtable) procedure
Applies proc to every association in hashtable. proc should be a procedure accepting two values, a key and
a corresponding value.
(hashtable-map! proc hashtable) procedure
Applies proc to every association in hashtable. proc should be a procedure accepting two values, a key
and a corresponding value, and returning one value. This value and the key will replace the existing
binding.

21.6 Composition

(hashtable-union! hashtable1 hashtable2) procedure
Includes all associations from hashtable2 in hashtable1 if the key of the association is not already contained
in hashtable1.
(hashtable-intersection! hashtable1 hashtable2) procedure
Removes all associations from hashtable1 for which the key of the association is not contained in
hashtable2.
(hashtable-difference! hashtable1 hashtable2) procedure
Removes all associations from hashtable1 for which the key of the association is contained in hashtable2.

LispKit Hashtable 97

22 LispKit Heap

Library (lispkit heap) provides an implementation of a priority queue in form of a binary max heap.
A max heap is a tree-based data structure in which for any given node C, if P is a parent node of C, then
the value of P is greater than or equal to the value of C. Heaps as implemented by (lispkit heap) are
mutable objects.
(make-heap pred<?) procedure
Returns a new empty binary max heap with pred<? being the associated ordering function.
(heap-empty? hp) procedure
Returns #t if the heap hp is empty, otherwise #f is returned.
(heap-max hp) procedure
Returns the largest item in heap hp, i.e. the itemwhich is larger than all others according to the comparison
function of hp. Note, heap-max does not remove the largest item as opposed to heap-delete-max! .
If there are no items on the heap, an error is signaled.
(heap-add! hp e1 …) procedure
Inserts an item into the heap. The same item can be inserted multiple times.
(heap-delete-max! hp) procedure
Returns the largest item in heap hp, i.e. the itemwhich is larger than all others according to the comparison
function of hp, and removes the item from the heap. If there are no items on the heap, an error is
signaled.
(heap-clear! hp) procedure
Removes all items from hp. After this procedure has been executed, the heap is empty.
(heap-copy hp) procedure
Returns a copy of heap hp.
(heap->vector hp) procedure
Returns a new vector containing all items of the heap hp in descending order. This procedure does not
mutate hp.
(heap->list hp) procedure
Returns a list containing all items of the heap hp in descending order.
(heap->reversed-list hp) procedure
Returns a list containing all items of the heap hp in ascending order.
(list->heap! hp items) procedure
Inserts all the items from list items into heap hp.
(list->heap items pred<?) procedure
Creates a new heap for the given ordering predicate pred<? and inserts all the items from list items into
it. list-\>heap returns the new heap.
(vector->heap vec pred<?) procedure
Creates and returns a new heap for the given ordering predicate pred<? and inserts all the items from
vector vec into it.

98

23 LispKit Iterate

Library (lispkit iterate) defines syntactical forms supporting frequently used iteration patterns.
Some of the special forms were inspired by Common Lisp.
(dotimes (var count) body …) syntax
(dotimes (var count result) body …)
dotimes iterates variable var over the integer range [0, count[, executing body for every iteration.
dotimes first evaluates count, which has to evaluate to a fixnum. If count evaluates to zero or a negative
number, body … is not executed. dotimes then executes body … once for each integer from 0 up to, but
not including, the value of count, with var bound to each integer. Then, result is evaluated and its value
is returned as the value of the dotimes form. If result is not provided, no value is being returned.

(let ((res 0))
(dotimes (i 10 res)

(set! res (+ res i))))
⇒ 45

(dolist (var lst) body …) syntax
(dolist (var lst result) body …)
dolist iterates variable var over the elements of list lst, executing body … for every iteration.
dolist first evaluates lst, which has to evaluate to a list. It then executes body … once for each element
in the list, with var bound to the current element of the list. Then, result is evaluated and its value is
returned as the value of the dolist form. If result is not provided, no value is being returned.

(let ((res ""))
(dolist (x '("a" "b" "c") res)
(set! res (string-append res x))))

⇒ "abc"

(loop break body …) syntax

loop iterates infinitely, executing body … in each iteration. break is a variable bound to an exit function
which can be used to leave the loop form. break receives one argument which is the result of the loop
form.

(let ((i 1))
(loop break

(if (> i 100)
(break i)
(set! i (* i 2)))))

⇒ 128

(while condition body …) syntax
(while condition unless break body …)

99

LispPad Library Reference 2020-12-23

while iterates as long as condition evaluates to a value other than #f , executing body… in each iteration.
unless can be used to bind an exit funtion to variable break so that it is possible to leave the loop by
calling thunk break. while forms never return a result.

(let ((i 0)(sum 0))
(while (< sum 100) unless exit

(if (> i 10) (exit))
(set! sum (+ sum i))
(set! i (fx1+ i)))

(cons i sum))
⇒ (11 . 55)

(for var from lo to hi body …) syntax
(for var from lo to hi step s body …)
This form of for iterates through all the fixnums from lo to hi (both inclusive), executing body … in
each iteration. If step s is provided, s is used as the increment of variable var which iterates through the
elements of the given range.
When this for form is being executed, first lo and hi are evaluated. Both have to evaluate to a fixnum.
Then, body … is executed once for each integer in the given range, with var bound to the current integer.
The form returns no result.

(let ((res '()))
(for x from 1 to 16 step 2

(set! res (cons x res)))
res)

⇒ (15 13 11 9 7 5 3 1)

(for var in lst body …) syntax
(for var in lst where condition body …)
(for var from (x …) body …)
This form of for iterates through all the elements of a list, executing body … in each iteration. The list
is either explicitly given via lst or its elements are enumerated in the form (x …). If a where predicate is
provided, the it acts as a filter on the elements through which variable var is iterated.
When this for form is being executed, first lst or (x …) is evaluated. Then, body … is executed once for
each element in the list, with var bound to the current element of the list. The form returns no result.

(let ((res '()))
(for x in (iota 16) where (odd? x)
(set! res (cons x res)))

res)
⇒ (15 13 11 9 7 5 3 1)

(exit-with break body …) syntax
(exit-with break from body …)
exit-with is not an iteration construct by itself. It is often used in combination with iteration constructs
to declare an exit function for leaving statements body …. break is a variable which gets bound to the exit
function in the scope of statements body …. exit-with either returns the result of the last statement of
body … or it returns the value passed to break in case the exit function gets called.

(exit-with break
(display "hello")
(break #f)
(display "world"))

⇒ #f ; printing "hello"

LispKit Iterate 100

24 LispKit List

Lists are heterogeneous data structures constructed out of pairs and an empty list object.
A pair consists of two fields called car and cdr (for historical reasons). Pairs are created by the procedure
cons . The car and cdr fields are accessed by the procedures car and cdr . As opposed to most other
Scheme implementations, lists are immutable in LispKit. Thus, it is not possible to set the car and cdr
fields of an already existing pair.
Pairs are used primarily to represent lists. A list is defined recursively as either the empty list or a pair
whose cdr is a list. More precisely, the set of lists is defined as the smallest set X such that
• The empty list is in X
• If list is in X, then any pair whose cdr field contains list is also in X.

The objects in the car fields of successive pairs of a list are the elements of the list. For example, a two-
element list is a pair whose car is the first element and whose cdr is a pair whose car is the second element
and whose cdr is the empty list. The length of a list is the number of elements, which is the same as the
number of pairs.
The empty list is a special object of its own type. It is not a pair, it has no elements, and its length is
zero.
The most general notation (external representation) for Scheme pairs is the “dotted” notation (c1 . c2)
where c1 is the value of the car field and c2 is the value of the cdr field. For example (4 . 5) is a
pair whose car is 4 and whose cdr is 5 . Note that (4 . 5) is the external representation of a pair, not
an expression that evaluates to a pair.
A more streamlined notation can be used for lists: the elements of the list are simply enclosed in paren-
theses and separated by spaces. The empty list is written () . For example,

(a b c d e)

and

(a . (b . (c . (d . (e . ())))))

are equivalent notations for a list of symbols.
A chain of pairs not ending in the empty list is called an improper list. Note that an improper list is not a
list. The list and dotted notations can be combined to represent improper lists:

(a b c . d)

is equivalent to

(a . (b . (c . d)))

101

LispPad Library Reference 2020-12-23

24.1 Basic constructors and procedures

(cons x y) procedure
Returns a pair whose car is x and whose cdr is y.
(car xs) procedure
Returns the contents of the car field of pair xs. Note that it is an error to take the car of the empty list.
(cdr xs) procedure
Returns the contents of the cdr field of pair xs. Note that it is an error to take the cdr of the empty list.
(caar xs) procedure
(cadr xs)
(cdar xs)
(cddr xs)
These procedures are compositions of car and cdr as follows:

(define (caar x) (car (car x)))
(define (cadr x) (car (cdr x)))
(define (cdar x) (cdr (car x)))
(define (cddr x) (cdr (cdr x)))

(caaar xs) procedure
(caadr xs)
(cadar xs)
(caddr xs)
(cdaar xs)
(cdadr xs)
(cddar xs)
(cdddr xs)
These eight procedures are further compositions of car and cdr on the same principles. For example,
caddr could be defined by (define caddr (lambda (x) (car (cdr (cdr x))))) . Arbitrary
compositions up to four deep are provided.
(caaaar xs) procedure
(caaadr xs)
(caadar xs)
(caaddr xs)
(cadaar xs)
(cadadr xs)
(caddar xs)
(cadddr xs)
(cdaaar xs)
(cdaadr xs)
(cdadar xs)
(cdaddr xs)
(cddaar xs)
(cddadr xs)
(cdddar xs)
(cddddr xs)
These sixteen procedures are further compositions of car and cdr on the same principles. For example,
cadddr could be defined by (define cadddr (lambda (x) (car (cdr (cdr (cdr x)))))) . Arbitrary
compositions up to four deep are provided.

LispKit List 102

LispPad Library Reference 2020-12-23

(make-list k) procedure
(make-list k fill)
Returns a list of k elements. If argument fill is given, then each element is set to fill. Otherwise the content
of each element is the empty list.
(list x …) procedure
Returns a list of its arguments, i.e. (x …).

(list ’a (+ 3 4) ’c) ⇒ (a 7 c)
(list) ⇒ ()

(cons* e1 e2 …) procedure
Like list , but the last argument provides the tail of the constructed list, returning (cons e1 (cons e2
(cons ... en))) . This function is called list* in Common Lisp.

(cons* 1 2 3 4) ⇒ (1 2 3 . 4)
(cons* 1) ⇒ 1

(length xs) procedure
Returns the length of list xs.

(length ’(a b c)) ⇒ 3
(length ’(a (b) (c d e))) ⇒ 3
(length ’()) ⇒ 0

24.2 Predicates

(pair? obj) procedure
Returns #t if obj is a pair, #f otherwise.
(null? obj) procedure
Returns #t if obj is an empty list, #f otherwise.
(list? obj) procedure
Returns #t if obj is a proper list, #f otherwise. A chain of pairs ending in the empty list is called a proper
list.
(every? pred xs …) procedure
Applies the predicate pred across the lists xs …, returning #t if the predicate returns #t on every
application. If there are n list arguments xs1 … xsn, then pred must be a procedure taking n arguments
and returning a single value, interpreted as a boolean. If an application of pred returns #f, then every?
returns #f immediately without applying pred further anymore.
(any? pred xs …) procedure
Applies the predicate pred across the lists xs …, returning #t if the predicate returns #t for at least one
application. If there are n list arguments xs1 … xsn, then pred must be a procedure taking n arguments
and returning a single value, interpreted as a boolean. If an application of pred returns #t, then any?
returns #t immediately without applying pred further anymore.

24.3 Composing and transforming lists

(append xs …) procedure
Returns a list consisting of the elements of the first list xs followed by the elements of the other lists. If

LispKit List 103

LispPad Library Reference 2020-12-23

there are no arguments, the empty list is returned. If there is exactly one argument, it is returned. The
last argument, if there is one, can be of any type. An improper list results if the last argument is not a
proper list.

(append ’(x) ’(y)) ⇒ (x y)
(append ’(a) ’(b c d)) ⇒ (a b c d)
(append ’(a (b)) ’((c))) ⇒ (a (b) (c))
(append ’(a b) ’(c . d)) ⇒ (a b c . d)
(append ’() ’a) ⇒ a

(concatenate xss) procedure
This procedure appends the elements of the list of lists xss. That is, concatenate returns (apply append
xss).
(reverse xs) procedure
Procedure reverse returns a list consisting of the elements of list xs in reverse order.

(reverse '(a b c)) ⇒ (c b a)
(reverse '(a (b c) d (e (f)))) ⇒ ((e (f)) d (b c) a)

(filter pred xs) procedure
Returns all the elements of list xs that satisfy predicate pred. Elements in the result list occur in the same
order as they occur in the argument list xs.

(filter even? '(0 7 8 8 43 -4)) ⇒ (0 8 8 -4)

(remove pred xs) procedure
Returns a list without the elements of list xs that satisfy predicate pred: (lambda (pred list) (filter
(lambda (x) (not (pred x))) list)) . Elements in the result list occur in the same order as they
occur in the argument list xs.

(remove even? '(0 7 8 8 43 -4)) ⇒ (7 43)

(partition pred xs) procedure
Partitions the elements of list xs with predicate pred returning two values: the list of in-elements (i.e. ele-
ments from xs satisfying pred) and the list of out-elements. Elements occur in the result lists in the same
order as they occur in the argument list xs.

(partition symbol? '(one 2 3 four five 6)) ⇒ (one four five)
(2 3 6)

(map f xs …) procedure
The map procedure applies procedure proc element-wise to the elements of the lists xs … and returns
a list of the results, in order. If more than one list is given and not all lists have the same length, map
terminates when the shortest list runs out. The dynamic order in which proc is applied to the elements of
the lists is unspecified.
It is an error if proc does not accept as many arguments as there are lists xs … and return a single value.

(map cadr '((a b) (d e) (g h))) ⇒ (b e h)

(map (lambda (n) (expt n n)) '(1 2 3 4 5)) ⇒ (1 4 27 256 3125)

LispKit List 104

LispPad Library Reference 2020-12-23

(map + '(1 2 3) '(4 5 6 7)) ⇒ (5 7 9)

(let ((count 0))
(map (lambda (ignored)

(set! count (+ count 1)) count)
'(a b))) ⇒ (1 2)

(append-map f xs …) procedure
Maps f over the elements of the lists xs …, just as in function map . However, the results of the applications
are appended together to determine the final result. append-map uses append to append the results
together. The dynamic order in which the various applications of f are made is not specified. At least one
of the list arguments xs … must be finite.
This is equivalent to (apply append (map f xs ...)) .

(append-map!
(lambda (x)

(list x (- x))) '(1 3 8))
⇒ (1 -1 3 -3 8 -8)

(filter-map f xs …) procedure
This function works like map , but only values differently from #f are being included in the resulting list.
The dynamic order in which the various applications of f are made is not specified. At least one of the list
arguments xs … must be finite.

(filter-map
(lambda (x)

(and (number? x) (* x x))) '(a 1 b 3 c 7))
⇒ (1 9 49)

(for-each f xs …) procedure
The arguments to for-each xs … are like the arguments to map , but for-each calls proc for its side
effects rather than for its values. Unlike map , for-each is guaranteed to call proc on the elements of
the lists in order from the first element to the last. If more than one list is given and not all lists have the
same length, for-each terminates when the shortest list runs out.
(fold-left f z xs …) procedure
Fundamental list recursion operator applying f to the elements x1 … xn of list xs in the following way:
(f ... (f (f z x1) x2) ... xn) . In other words, this function applies f recursively based on the
following rules, assuming one list parameter xs:

(fold-left f z xs) ⇒ (fold-left f (f z (car xs)) (cdr xs))
(fold-left f z '()) ⇒ z

If n list arguments are provided, then function f must take n + 1 parameters: one element from each
list, and the “seed” or fold state, which is initially z as its very first argument. The fold-left operation
terminates when the shortest list runs out of values.

(fold-left (lambda (x y) (cons y x)) '() '(1 2 3 4)) ⇒ (4 3 2 1)
(define (xcons+ rest a b) (cons (+ a b) rest))
(fold-left xcons+ '() '(1 2 3 4) '(10 20 30 40 50)) ⇒ (44 33 22 11)

Please note, compared to function fold from library (srfi 1) , this function applies the “seed”/fold
state always as its first argument to f.

LispKit List 105

LispPad Library Reference 2020-12-23

(fold-right f z xs …) procedure
Fundamental list recursion operator applying f to the elements x1 … xn of list xs in the following way:
(f x1 (f x2 ... (f xn z))) . In other words, this function applies f recursively based on the following
rules, assuming one list parameter xs:

(fold-right f z xs) ⇒ (f (car xs) (fold-right f z (cdr xs)))
(fold-right f z '()) ⇒ z
(define (xcons xs x) (cons x xs))
(fold-left xcons '() '(1 2 3 4)) ⇒ (4 3 2 1)

If n list arguments xs … are provided, then function f must take n + 1 parameters: one element from
each list, and the “seed” or fold state, which is initially z. The fold-right operation terminates when
the shortest list runs out of values.

(fold-right (lambda (x l) (if (even? x) (cons x l) l))
'()
'(1 2 3 4 5 6)) ⇒ (2 4 6)

As opposed to fold-left , procedure fold-right is not tail-recursive.
(sort less xs) procedure
Returns a sorted list containing all elements of xs such that for every element xi at position i, (less xj xi
) returns #t for all elements xj at position j where j < i.
(merge less xs ys) procedure
Merges two lists xs and ys which are both sorted with respect to the total ordering predicate less and
returns the result as a list.
(tabulate count proc) procedure
Returns a list with count elements. Element i of the list, where 0 ≤ i < count, is produced by (proc i)
.

(tabulate 4 fx1+) ⇒ (1 2 3 4)

(iota count) procedure
(iota count start)
(iota count start step)
Returns a list containing the elements (start start+step ... start+(count-1)*step) . The start
and step parameters default to 0 and 1.

(iota 5) ⇒ (0 1 2 3 4)
(iota 5 0 -0.1) ⇒ (0 -0.1 -0.2 -0.3 -0.4)

24.4 Finding and extracting elements

(list-tail xs k) procedure
Returns the sublist of list xs obtained by omitting the first k elements. Procedure list-tail could be
defined by

(define (list-tail xs k)
(if (zero? k) xs (list-tail (cdr xs) (- k 1))))

LispKit List 106

LispPad Library Reference 2020-12-23

(list-ref xs k) procedure
Returns the k-th element of list xs. This is the same as the car of (list-tail xs k) .
(memq obj xs) procedure
(memv obj xs)
(member obj xs)
(member obj xs compare)
These procedures return the first sublist of xs whose car is obj, where the sublists of xs are the non-empty
lists returned by (list-tail xs k) for k less than the length of xs. If obj does not occur in xs, then #f
is returned. The memq procedure uses eq? to compare obj with the elements of xs, while memv uses
eqv? and member uses compare, if given, and equal? otherwise.
(delq obj xs) procedure
(delv obj xs)
(delete obj xs)
(delete obj xs compare)
Returns a copy of list xs with all entries equal to element obj removed. delq uses eq? to compare
obj with the elements in list xs, delv uses eqv? , and delete uses compare if given, and equal?
otherwise.
(assq obj alist) procedure
(assv obj alist)
(assoc obj alist)
(assoc obj alist compare)
alist must be an association list, i.e. a list of key/value pairs. This family of procedures finds the first pair
in alist whose car field is obj, and returns that pair. If no pair in alist has obj as its car, then #f is returned.
The assq procedure uses eq? to compare obj with the car fields of the pairs in alist, while assv uses
eqv? and assoc uses compare if given, and equal? otherwise.

(define e '((a 1) (b 2) (c 3)))
(assq 'a e) ⇒ (a 1)
(assq 'b e) ⇒ (b 2)
(assq 'd e) ⇒ #f
(assq (list 'a) '(((a)) ((b)) ((c)))) ⇒ #f
(assoc (list 'a) '(((a)) ((b)) ((c)))) ⇒ ((a))
(assq 5 '((2 3) (5 7) (11 13))) ⇒ unspecified
(assv 5 '((2 3) (5 7) (11 13))) ⇒ (5 7)

(alist-delq obj alist) procedure
(alist-delv obj alist)
(alist-delete obj alist)
(alist-delete obj alist compare)
Returns a copy of association list alistwith all entries removed whose car is equal to element obj. alist-
delq uses eq? to compare obj with the first elements of all members of list xs, alist-delv uses
eqv? , and alist-delete uses compare if given, and equal? otherwise.
(key xs) procedure
(key xs default)
Returns (car xs) if xs is a pair, otherwise default is being returned. If default is not provided as an
argument, #f is used instead.
(value xs) procedure
(value xs default)

LispKit List 107

LispPad Library Reference 2020-12-23

Returns (cdr xs) if xs is a pair, otherwise default is being returned. If default is not provided as an
argument, #f is used instead.

LispKit List 108

25 LispKit Log

Library (lispkit log) defines a simple logging API for LispKit. Log entries are sent to a logger. A logger
processes each log entry, e.g. by adding or filtering information, and eventually persists it if the severity
of the log entry is at or above the level of the severity of the logger. Supported are logging to a port and
into a file. The macOS IDE LispPad implements a special version of (lispkit log) which makes log
messages available in a session logging user interface supporting filtering, sorting, and exporting of log
entries.
A log entry consists of the following four components: a timestamp, a severity, a sequence of tags, and a
log message. Timestamps are generated via current-second . There are five severities, represented as
symbols, supported by this library: debug , info , warn , err , and fatal . Also tags are represented
as symbols. The sequence of tags is represented as a list of symbols. A log message is a string.
Logging functions take the logger as an optional argument. If it is not provided, the current logger is
chosen. The current logger is represented via the parameter object current-logger . The current
logger is initially set to default-logger .

25.1 Log severities

Log severities are represented using symbols. The following symbols are supported:
• debug (0),
• info (1),
• warn (2),
• err (3), and
• fatal (4).

Each severity has an associated severity level (previously listed in parenthesis for each severity). The higher
the level, the more severe a logged issue.
default-severity object
The default logging severity that is used if no severity is specified (initially 'debug) when a new empty
logger is created via procedure logger .
(severity? obj) procedure
Returns #t if obj is an object representing a log severity, #f otherwise. The following symbols are
representing severities: debug , info , warn , err , and fatal .
(severity->level sev) procedure
Returns the severity level of severity sev as a fixnum.
(severity->string sev) procedure
Returns a human readable string (in English) for the default textual representation of the given severity
sev.

109

LispPad Library Reference 2020-12-23

25.2 Log formatters

Log formatters are used by port and file loggers to map a structured logging request consisting of a times-
tamp, severity, log message, and logging tags into a string.
default-log-formatter object
The default log formatting procedure. It is used by default when a new port or file logger gets created
and no formatter procedure is provided.
(long-log-formatter timestamp sev message tags) procedure
Formatter procedure using a long format.
(short-log-formatter timestamp sev message tags) procedure
Formatter procedure using a short format.

25.3 Logger objects

default-logger object
The default logger that is initially created by the logging library. The native implementation for LispKit logs
to standard out, the native implementation for LispPad logs into the session logging system of LispPad.
current-logger parameter object
Parameter object referring to the current logger that is used as a default if no logger object is provided for
a logging request. Initially current-logger is set to default-logger .
(logger? obj) procedure
Returns #t if obj is a logger object, #f otherwise.
(logger) procedure
(logger sev)
Returns a new empty logger with the lowest persisted severity sev. The logger does not perform any
logging action. If sev is not provided, default-severity is used as a default.
(make-logger logproc lg) procedure
(make-logger logproc deinit lg)
Returns a new logger with logging procedure logproc, the de-initialization thunk deinit, and a logger object
lg which can be used as a delegate and whose state will be inherited (e.g. the lowest persisted severity).
logproc gets called by logging requests via procedures such as log , log-debug , etc. logproc is a procedure
with the following signature: (logproc timestamp sev message tags) . timestamp is a floating-
point number representing the number of seconds since 00:00 UTC on January 1, 1970 (e.g. returned by
current-second), sev is a severity, message is the log message string, and tags is a list of logging tags. A
tag is represented as a symbol.
Procedure deinit is called without parameters when the logger gets closed via close-logger before the de-
initialization procedure of lg is called.
(make-port-logger port) procedure
(make-port-logger port formatter)
(make-port-logger port formatter sev)
Returns a new port logger object which forwards log messages formatted by formatter to port if the severity
is above the lowest persisted severity sev.
formatter is a procedure with the following signature: (formatter timestamp sev message tags)
. timestamp is a floating-point number representing the number of seconds since 00:00 UTC on January

LispKit Log 110

LispPad Library Reference 2020-12-23

1, 1970, sev is a severity, message is the log message string, and tags is a list of logging tags. A tag is
represented as a symbol.
(make-file-logger path) procedure
(make-file-logger path formatter)
(make-file-logger path formatter sev)
Returns a new file logger object which writes log messages formatted by formatter into a new file at the
given file path path if the severity is above the lowest persisted severity sev.
formatter is a procedure with the following signature: (formatter timestamp sev message tags)
. timestamp is a floating-point number representing the number of seconds since 00:00 UTC on January
1, 1970, sev is a severity, message is the log message string, and tags is a list of logging tags. A tag is
represented as a symbol.
(make-tag-logger tag lg) procedure
Returns a new logger which includes tag into the tags to log and forwards the logging request to logger
lg.
(make-filter-logger filter lg) procedure
Returns a new logger which filters logging requests via procedure filter and forwards the requests which
pass the filter to logger lg.
filter is a predicate with the following signature: (filter timestamp sev message tags) . timestamp
is a floating-point number representing the number of seconds since 00:00 UTC on January 1, 1970, sev
is a severity, message is the log message string, and tags is a list of logging tags. A tag is represented as a
symbol.
(close-logger lg) procedure
Closes the logger lg by calling the deinitialization procedures of the full logger chain of lg.
(logger-addproc lg) procedure
Returns the logging request procedure used by logger lg.
(logger-severity lg) procedure
Returns the default logging severity used by logger lg.
(logger-severity-set! lg sev) procedure
Sets the default logging severity used by logger lg to sev.

25.4 Logging procedures

(log sev message) procedure
(log sev message tag)
(log sev message lg)
(log sev message tag lg)
Logs message string message with severity sev into logger lg with tag if provided. If lg is not provided, the
current logger (as defined by parameter object current-logger) is used.
(log-debug message) procedure
(log-debug message tag)
(log-debug message lg)
(log-debug message tag lg)
Logs message string message with severity debug into logger lg with tag if provided. If lg is not provided,
the current logger (as defined by parameter object current-logger) is used.

LispKit Log 111

LispPad Library Reference 2020-12-23

(log-info message) procedure
(log-info message tag)
(log-info message lg)
(log-info message tag lg)
Logs message string message with severity info into logger lg with tag if provided. If lg is not provided,
the current logger (as defined by parameter object current-logger) is used.
(log-warn message) procedure
(log-warn message tag)
(log-warn message lg)
(log-warn message tag lg)
Logs message string message with severity warn into logger lg with tag if provided. If lg is not provided,
the current logger (as defined by parameter object current-logger) is used.
(log-error message) procedure
(log-error message tag)
(log-error message lg)
(log-error message tag lg)
Logs message string message with severity error into logger lg with tag if provided. If lg is not provided,
the current logger (as defined by parameter object current-logger) is used.
(log-fatal message) procedure
(log-fatal message tag)
(log-fatal message lg)
(log-fatal message tag lg)
Logs message string message with severity fatal into logger lg with tag if provided. If lg is not provided,
the current logger (as defined by parameter object current-logger) is used.

25.5 Logging syntax

(log-time expr) syntax
(log-time expr descr)
(log-time expr descr tag)
(log-time expr descr tag lg)
Log the time for executing expression expr into logger lg. descr is a description string and tag is a logging
tag. If lg is not provided, the current logger (as defined by parameter object current-logger) is used.
(log-using lg body …) syntax
Assigns lg as the current logger and executed expressions body … in the context of this assignment.
(log-into-file filepath body …) syntax
Creates a new file logger at file path filepath, assigns the new file logger to parameter object current-
logger and executes the statements body … in the context of this assignment.
(log-with-tag tag body …) syntax
Creates a new logger which appends tag to the tags logged to current-logger and assigns the new
logger to current-logger . body … gets executed in the context of this assignment.
(log-from-severity sev body …) syntax
Modifies the current logger setting its lowest persisted severity to sev and executing body … in the context
of this change. Once body … has been executed, the lowest persisted severity is set back to its original
value.

LispKit Log 112

LispPad Library Reference 2020-12-23

(log-dropping-below-severity sev body …) syntax
Creates a new logger on top of current-logger which filters out all logging requests with a severity level
below the severity level of sev and assigns the new logger to current-logger . body … gets executed in
the context of this assignment.

LispKit Log 113

26 LispKit Markdown

Library (lispkit markdown) provides an API for programmatically constructing Markdown documents,
for parsing strings in Markdown format, as well as for mapping Markdown documents into correspond-
ing HTML. The Markdown syntax supported by this library is based on the CommonMark Markdown
specification.

26.1 Data Model

Markdown documents are represented using an abstract syntax that is implemented by three algebraic
datatypes block , list-item , and inline , via define-datatype of library (lispkit datatype)
.

26.1.1 Blocks

At the top-level, a Markdown document consist of a list of blocks. The following recursively defined
datatype shows all the supported block types as variants of type block .

(define-datatype block markdown-block?
(document blocks)

where (markdown-blocks? blocks)
(blockquote blocks)

where (markdown-blocks? blocks)
(list-items start tight items)

where (and (opt fixnum? start) (markdown-list? items))
(paragraph text)

where (markdown-text? text)
(heading level text)

where (and (fixnum? level) (markdown-text? text))
(indented-code lines)

where (every? string? lines)
(fenced-code lang lines)

where (and (opt string? lang) (every? string? lines))
(html-block lines)

where (every? string? lines)
(reference-def label dest title)

where (and (string? label) (string? dest) (every? string? title))
(thematic-break))

(document blocks) represents a full Markdown document consisting of a list of blocks. (blockquote
blocks) represents a blockquote block which itself has a list of sub-blocks. (list-items start tight
items) defines either a bullet list or an ordered list. start is #f for bullet lists and defines the first item
number for ordered lists. tight is a boolean which is #f if this is a loose list (with vertical spacing between
the list items). items is a list of list items of type list-item as defined as follows:

(define-datatype list-item markdown-list-item?
(bullet ch tight? blocks)

114

https://daringfireball.net/projects/markdown/
https://commonmark.org

LispPad Library Reference 2020-12-23

where (and (char? ch) (markdown-blocks? blocks))
(ordered num ch tight? blocks)

where (and (fixnum? num) (char? ch) (markdown-blocks? blocks)))

The most frequent Markdown block type is a paragraph. (paragraph text) represents a single para-
graph of text where text refers to a list of inline text fragments of type inline (see below). (heading
level text) defines a heading block for a heading of a given level, where level is a number starting
with 1 (up to 6). (indented-code lines) represents a code block consisting of a list of text lines
each represented by a string. (fenced-code lang lines) is similar: it defines a code block with code
expressed in the given language lang. (html lines) defines a HTML block consisting of the given lines
of text. (reference-def label dest title) introduces a reference definition consisting of a given
label, a destination URI dest, as well as a title string. Finally, (thematic-break) introduces a thematic
break block separating the previous and following blocks visually, often via a line.

26.1.2 Inline Text

Text is represented as lists of inline text segments, each represented as an object of type inline . inline
is defined as follows:

(define-datatype inline markdown-inline?
(text str)

where (string? str)
(code str)

where (string? str)
(emph text)

where (markdown-text? text)
(strong text)

where (markdown-text? text)
(link text uri title)

where (and (markdown-text? text) (string? uri) (string? title))
(auto-link uri)

where (string? uri)
(email-auto-link email)

where (string? uri)
(image text uri title)

where (and (markdown-text? text) (string? uri) (string? title))
(html tag)

where (string? tag)
(line-break hard?))

(text str) refers to a text segment consisting of string str. (code str) refers to a code string str
(often displayed as verbatim text). (emph text) represents emphasized text (often displayed as italics).
(strong text) represents text in boldface. (link text uri title) represents a hyperlink with text
linking to uri and title representing a title for the link. (auto-link uri) is a link where uri is both the
text and the destination URI. (email-auto-link email) is a “mailto:” link to the given email address
email. (image text uri title) inserts an image at uri with image description text and image link
title title. (html tag) represents a single HTML tag of the form < tag > . Finally, (line-break #f)
introduces a “soft line break”, whereas (line-break #t) inserts a “hard line break”.

26.2 Creating Markdown documents

Markdown documents can either be constructed programmatically via the datatypes introduced above, or
a string representing a Markdown documents gets parsed into the internal abstract syntax representation
via function markdown .

LispKit Markdown 115

LispPad Library Reference 2020-12-23

For instance, (markdown "# My title\n\nThis is a paragraph.") returns a markdown document
consisting of two blocks: a header block for header “My title” and a paragraph block for the text “This is a
paragraph”:

(markdown "# My title\n\nThis is a paragraph.")
⇒ #block:(document (#block:(heading 1 (#inline:(text "My title"))) #block:(paragraph

(#inline:(text "This is a paragraph.")))))↪

The same document can be created programmatically in the following way:

(document
(list

(heading 1 (list (text "My title")))
(paragraph (list (text "This is a paragraph.")))))

⇒ #block:(document (#block:(heading 1 (#inline:(text "My title"))) #block:(paragraph
(#inline:(text "This is a paragraph.")))))↪

26.3 Processing Markdown documents

Since the abstract syntax ofMarkdown documents is represented via algebraic datatypes, patternmatching
can be used to deconstruct the data. For instance, the following function returns all the top-level headers
of a given Markdown document:

(import (lispkit datatype)) ; this is needed to import `match`

(define (top-headings doc)
(match doc

((document blocks)
(filter-map (lambda (block)

(match block
((heading 1 text) (text->raw-string text))
(else #f)))

blocks))))

An example for how top-headings can be applied to this Markdown document:

header 1
Paragraph.
__header__ 2
header 3
The end.

is shown here:

(top-headings
(markdown "# *header* 1\nParagraph.\n# __header__ 2\n## header 3\nThe end."))

⇒ ("header 1" "header 2")

26.4 API

(markdown-blocks? obj) procedure
Returns #t if obj is a proper list of objects o for which (markdown-block? o) returns #t ; otherwise
the procedure returns #f .

LispKit Markdown 116

LispPad Library Reference 2020-12-23

(markdown-block? obj) procedure
Returns #t if obj is a mMrkdown block object, i.e. a variant of algebraic datatype block .
(markdown-block=? lhs rhs) procedure
Returns #t if Markdown blocks lhs and rhs are equals; otherwise it returns #f .
(markdown-list? obj) procedure
Returns #t if obj is a proper list of list items i for which (markdown-list-item? i) returns #t ;
otherwise the procedure returns #f .
(markdown-list-item? obj) procedure
Returns #t if obj is a Markdown list item, i.e. a variant of algebraic datatype list-item .
(markdown-list-item=? lhs rhs) procedure
Returns #t if Markdown list items lhs and rhs are equals; otherwise it returns #f .
(markdown-text? obj) procedure
Returns #t if obj is a proper list of objects o for which (markdown-inline? o) returns #t ; otherwise
the procedure returns #f .
(markdown-inline? obj) procedure
Returns #t if obj is an inline text object, i.e. a variant of algebraic datatype inline .
(markdown-inline=? lhs rhs) procedure
Returns #t if the two Markdown inline text objects lhs and rhs are equals; otherwise the procedure
returns #f .
(markdown? obj) procedure
Returns #t if obj is a valid Markdown document, i.e. an instance of the document variant of datatype
block ; otherwise the procedure returns #f .
(markdown=? lhs rhs) procedure
Returns #t if Markdown documents lhs and rhs are equals; otherwise it returns #f .
(markdown str) procedure
Parses the text in Markdown format in str and returns a representation of the abstract syntax using the
algebraic datatypes block , list-item , and inline .
(markdown->html md) procedure
Converts a Markdown document md into HTML, represented in form of a string. md needs to satisfy the
markdown? predicate.
(blocks->html bs) procedure
(blocks->html bs tight)
Converts a Markdown block or list of blocks bs into HTML, represented in form of a string. tight? is a
boolean and should be set to true if the conversion should consider tight typesetting (see CommonMark
specification for details).
(text->html txt) procedure
Converts Markdown inline text or a list of inline text objects txt into HTML and returns the generated
HTML in form of a string.

(markdown->html-doc md) procedure
(markdown->html-doc md style)
(markdown->html-doc md style codestyle)
(markdown->html-doc md style codestyle cblockstyle)
(markdown->html-doc md style codestyle cblockstyle colors)

LispKit Markdown 117

LispPad Library Reference 2020-12-23

Converts a Markdown document md into a styled HTML document, represented in form of a string. md
needs to satisfy the markdown? predicate. style is a list with up to three elements: (size font color). It
specifies the default text style of the document. size is the point size of the font, font is a font name, and
color is a HTML color specification (e.g. "#FF6789"). codestyle specifies the style of inline code in the
same format. colors is a list of HTML color specifications for the following document elements in this
order: the border color of code blocks, the color of blockquote “bars”, the color of H1, H2, H3 and H4
headers.
(text->string text) procedure
Converts given inline text text into a string representation which encodes markup in text using Markdown
syntax. text needs to satisfy the markdown-text? predicate.
(text->raw-string text) procedure
Converts given inline text text into a string representation ignoring markup in text. text needs to satisfy
the markdown-text? predicate.

LispKit Markdown 118

27 LispKit Match

(lispkit match) ports Alex Shinn’s portable hygienic pattern matcher library to LispKit and adapts it
to match LispKit’s features. For instance, (lispkit match) assumes all pairs are immutable. At this
point, the library does not support matching against algebraic datatypes. Procedure match of library
(lispkit datatype) needs to be used for this purpose.

27.1 Simple patterns

Patterns are written to look like the printed representation of the objects they match. The basic usage for
matching an expression expr against a pattern pat via procedure match looks like this:

(match expr (pat body ...) ...)

Here, the result of expr is matched against each pattern in turn, and the corresponding body is evaluated
for the first to succeed. Thus, a list of three elements matches a list of three elements.

(let ((ls (list 1 2 3)))
(match ls ((1 2 3) #t))) ⇒ #t

If no patterns match, an error is signaled. Identifiers will match anything, and make the corresponding
binding available in the body.

(match (list 1 2 3) ((a b c) b)) ⇒ 2

If the same identifier occurs multiple times, the first instance will match anything, but subsequent in-
stances must match a value which is equal? to the first.

(match (list 1 2 1) ((a a b) 1) ((a b a) 2)) ⇒ 2

The special identifier _ matches anything, no matter how many times it is used, and does not bind the
result in the body.

(match (list 1 2 1) ((_ _ b) 1) ((a b a) 2)) ⇒ 1

To match a literal identifier (or list or any other literal), use quote .

(match 'a ('b 1) ('a 2)) ⇒ 2

Analogous to its normal usage in scheme, quasiquote can be used to quote a mostly literally matching
object with selected parts unquoted.

119

LispPad Library Reference 2020-12-23

(match (list 1 2 3) (`(1 ,b ,c) (list b c))) ⇒ (2 3)

Often you want to match any number of a repeated pattern. Inside a list pattern you can append ...
after an element to match zero or more of that pattern, similar to a regular expression Kleene star.

(match (list 1 2) ((1 2 3 ...) #t)) ⇒ #t
(match (list 1 2 3) ((1 2 3 ...) #t)) ⇒ #t
(match (list 1 2 3 3 3) ((1 2 3 ...) #t)) ⇒ #t

Pattern variables matched inside the repeated pattern are bound to a list of each matching instance in the
body.

(match (list 1 2) ((a b c ...) c)) ⇒ ()
(match (list 1 2 3) ((a b c ...) c)) ⇒ (3)
(match (list 1 2 3 4 5) ((a b c ...) c)) ⇒ (3 4 5)

More than one ... may not be used in the same list, since this would require exponential backtracking
in the general case. However, ... need not be the final element in the list, and may be succeeded by a
fixed number of patterns.

(match (list 1 2 3 4) ((a b c ... d e) c)) ⇒ ()
(match (list 1 2 3 4 5) ((a b c ... d e) c)) ⇒ (3)
(match (list 1 2 3 4 5 6 7) ((a b c ... d e) c)) ⇒ (3 4 5)

___ is provided as an alias for ... when it is inconvenient to use the ellipsis (as in a syntax-rules
template).
The ..1 syntax is exactly like the ... except that it matches one or more repetitions like a + in regular
expressions.

(match (list 1 2) ((a b c ..1) c)) ⇒ [error] no matching pattern
(match (list 1 2 3) ((a b c ..1) c)) ⇒ (3)

27.2 Composite patterns

The boolean operators and , or and not can be used to group and negate patterns analogously to their
Scheme counterparts.
The and operator ensures that all subpatterns match. This operator is often used with the idiom (and x
pat) to bind x to the entire value that matches pat , similar to “as-patterns” in ML and Haskell. Another
common use is in conjunction with not patterns to match a general case with certain exceptions.

(match 1 ((and) #t)) ⇒ #t
(match 1 ((and x) x)) ⇒ 1
(match 1 ((and x 1) x)) ⇒ 1

The or operator ensures that at least one subpattern matches. If the same identifier occurs in different
subpatterns, it is matched independently. All identifiers from all subpatterns are bound if the or operator
matches, but the binding is only defined for identifiers from the subpattern which matched.

LispKit Match 120

LispPad Library Reference 2020-12-23

(match 1 ((or) #t) (else #f)) ⇒ #f
(match 1 ((or x) x)) ⇒ 1
(match 1 ((or x 2) x)) ⇒ 1
(match 1 ((or 1 x) x)) ⇒ [error] variable not yet initialized: x

The not operator succeeds if the given pattern does not match. None of the identifiers used are available
in the body.

(match 1 ((not 2) #t)) ⇒ #t

The more general operator ? can be used to provide a predicate. The usage is (? predicate pat
...) where predicate is a Scheme expression evaluating to a predicate called on the value to match,
and any optional patterns after the predicate are then matched as in an and pattern.

(match 1 ((? odd? x) x)) ⇒ 1

27.3 Advanced patterns

The field operator = is used to extract an arbitrary field and match against it. It is useful for more complex
or conditional destructuring that can’t be more directly expressed in the pattern syntax. The usage is (=
field pat) , where field can be any expression, and should evaluate to a procedure of one argument
which gets applied to the value to match to generate a new value to match against pat .
Thus the pattern (and (= car x) (= cdr y)) is equivalent to (x . y) , except it will result in an
immediate error if the value isn’t a pair.

(match '(1 . 2) ((= car x) x)) ⇒ 1
(match '(1 . 2)

((and (= car x) (= cdr y)) (+ x y))) ⇒ 3
(match 4 ((= square x) x)) ⇒ 16

The record operator $ is used as a concise way to match records. The usage is ($ rtd field ...) ,
where rtd should be the record type descriptor specified as the first argument to define-record-type ,
and each field is a subpattern matched against the fields of the record in order. Not all fields must be
present. For more information on record type descriptors see library (lispkit record) .

(define-record-type employee
(make-employee name title)
employee?
(name get-name)
(title get-title))

(match (make-employee "Bob" "Doctor")
(($ employee n t) (list t n)))

⇒ ("Doctor" "Bob")

For records with more fields it can be helpful to match them by name rather than position. For this you
can use the @ operator, originally a Gauche extension:

(define-record-type employee
(make-employee name title)
employee?

LispKit Match 121

LispPad Library Reference 2020-12-23

(name get-name)
(title get-title))

(match (make-employee "Bob" "Doctor")
((@ employee (title t) (name n)) (list t n)))

⇒ ("Doctor" "Bob")

The set! and get! operators are used to bind an identifier to the setter and getter of a field,
respectively. The setter is a procedure of one argument, which mutates the field to that argument. The
getter is a procedure of no arguments which returns the current value of the field.

(let ((x (mcons 1 2)))
(match x ((1 . (set! s)) (s 3) x))) ⇒ #<pair 1 3>

(match '(1 . 2) ((1 . (get! g)) (g))) ⇒ 2

The new operator *** can be used to search a tree for subpatterns. A pattern of the form (x *** y)
represents the subpattern y located somewhere in a tree where the path from the current object to y
can be seen as a list of the form (x ...) . y can immediately match the current object in which case the
path is the empty list. In a sense, it is a two-dimensional version of the ... pattern. As a common case
the pattern (_ *** y) can be used to search for y anywhere in a tree, regardless of the path used.

(match '(a (a (a b))) ((x *** 'b) x)) ⇒ (a a a)
(match '(a (b) (c (d e) (f g)))

((x *** 'g) x)) ⇒ (a c f)

27.4 Pattern grammar

pat = patvar ;; anything, and binds pattern var
| _ ;; anything
| () ;; the empty list
| #t ;; #t
| #f ;; #f
| string ;; a string
| number ;; a number
| character ;; a character
| 'sexp ;; an s-expression
| 'symbol ;; a symbol (special case of s-expr)
| (pat1 ... patN) ;; list of n elements
| (pat1 ... patN . patN+1) ;; list of n or more
| (pat1 ... patN patN+1 ooo) ;; list of n or more, each element

;; of remainder must match patN+1
| #(pat1 ... patN) ;; vector of n elements
| #(pat1 ... patN patN+1 ooo) ;; vector of n or more, each element

;; of remainder must match patN+1
| ($ record-type pat1 ... patN) ;; a record (patK matches in slot order)
| (struct struct-type pat1 ... patN) ;; ditto
| (@ record-type (slot1 pat1) ...) ;; a record (using slot names)
| (object struct-type (slot1 pat1) ...) ;; ditto
| (= proc pat) ;; apply proc, match the result to pat
| (and pat ...) ;; if all of pats match
| (or pat ...) ;; if any of pats match
| (not pat ...) ;; if no pats match
| (? predicate pat ...) ;; if predicate true and all pats match
| (set! patvar) ;; anything, and binds setter
| (get! patvar) ;; anything, and binds getter
| (pat1 *** pat2) ;; tree subpattern (*)

LispKit Match 122

LispPad Library Reference 2020-12-23

| `qp ;; a quasi-pattern

patvar = a symbol except _, quote, $, struct, @, object, =, and, or,
not, ?, set!, get!, quasiquote, ..., ___, ..1, ..=, ..*.

ooo = ... ;; zero or more
| ___ ;; zero or more
| ..1 ;; one or more
| ..= k ;; exactly k where k is an integer. (*)

;; Example: ..= 1, ..= 2 ...
| ..* k j ;; between k and j, where k and j are (*)

;; integers. Example: ..* 3 4, match 3
;; or 4 of a pattern ..* 1 5 match from

;; 1 to 5 of a pattern

qp = () ;; the empty list
| #t ;; #t
| #f ;; #f
| string ;; a string
| number ;; a number
| character ;; a character
| identifier ;; a symbol
| (qp_1 ... qp_n) ;; list of n elements
| (qp_1 ... qp_n . qp_{n+1}) ;; list of n or more
| (qp_1 ... qp_n qp_n+1 ooo) ;; list of n or more, each element

;; of remainder must match qp_n+1
| #(qp_1 ... qp_n) ;; vector of n elements
| #(qp_1 ... qp_n qp_n+1 ooo) ;; vector of n or more, each element

;; of remainder must match qp_n+1
| ,pat ;; a pattern
| ,@pat ;; a pattern

27.5 Matching API

(match expr (pat . body)…) procedure
(match expr (pat (=> failure) . body)…)
The result of expr is matched against each pattern pat in turn until the first pattern matches. When
a match is found, the corresponding body statements are evaluated in order, and the result of the last
expression is returned as the result of the entire match evaluation. If a failure occurs, then it is bound to
a procedure of no arguments which continues processing at the next pattern. If no pattern matches, an
error is signaled.
(match-lambda (pat body …)…) procedure
This is a shortcut for lambda in combination with match . match-lambda returns a procedure of one
argument, and matches that argument against each clause.

(lambda (expr) (match expr (pat body ...) ...))

(match-lambda* (pat body …)…) procedure
match-lambda* is similar to match-lambda . It returns a procedure of any number of arguments, and
matches the argument list against each clause.

(lambda expr (match expr (pat body ...) ...))

(match-let ((var value) …) body …) procedure
(match-let loop ((var value) …) body …)

LispKit Match 123

LispPad Library Reference 2020-12-23

match-let matches each variable var to the corresponding expression, and evaluates the body with all
match variables in scope. It raises an error if any of the expressions fail to match. This syntax is analogous
to named let and can also be used for recursive functions which match on their arguments as in match-
lambda* .
(match-let* ((var value) …) body …) procedure
Similar to match-let , but analogously to let* , match-let* matches and binds the variables in
sequence, with preceding match variables in scope.
(match-letrec ((var value) …) body …) procedure
Similar to match-let , but analogously to letrec , match-letrec matches and binds the variables
with all match variables in scope.

This documentation was derived from code and documentation written by Andrew K. Wright, Robert
Cartwright, Alex Shinn, Panicz Maciej Godek, Felix Thibault, Shiro Kawai and Ludovic Cortès.

LispKit Match 124

28 LispKit Math

Library (lispkit math) defines functions on numbers. Numbers are arranged into a tower of subtypes
in which each level is a subset of the level above it:
• number
• complex number
• real number
• rational number
• integer

For example, 3 is an integer. Therefore 3 is also a rational, a real, and a complex number. These types are
defined by the predicates number? , complex? , real? , rational? , and integer? .
There is no simple relationship between a number’s type and its representation inside a computer.
Scheme’s numerical operations treat numbers as abstract data, as independent of their representation as
possible.

28.1 Numerical constants

pi constant
The constant pi.
e constant
Euler’s number, i.e. the base of the natural logarithm.

28.2 Predicates

(number? obj) procedure
(complex? obj)
(real? obj)
(rational? obj)
(integer? obj)
These numerical type predicates can be applied to any kind of argument, including non-numbers. They
return #t if the object is of the named type, and otherwise they return #f . In general, if a type predicate
is true of a number then all higher type predicates are also true of that number. Consequently, if a type
predicate is false of a number, then all lower type predicates are also false of that number.
If z is a complex number, then (real? z) is true if and only if (zero? (imag-part z)) is true. If x is
an inexact real number, then (integer? x) is true if and only if (= x (round x)) .
The numbers +inf.0 , -inf.0 , and +nan.0 are real but not rational.

125

LispPad Library Reference 2020-12-23

(complex? 3+4i) ⇒ #t
(complex? 3) ⇒ #t
(real? 3) ⇒ #t
(real? -2.5+0i) ⇒ #t
(real? -2.5+0.0i) ⇒ #f
(real? #e1e10) ⇒ #t
(real? +inf.0) ⇒ #t
(real? +nan.0) ⇒ #t
(rational? -inf.0) ⇒ #f
(rational? 3.5) ⇒ #t
(rational? 6/10) ⇒ #t
(rational? 6/3) ⇒ #t
(integer? 3+0i) ⇒ #t
(integer? 3.0) ⇒ #t
(integer? 8/4) ⇒ #t

(fixnum? obj) procedure
Returns #t if object obj is a fixnum; otherwise returns #f . A fixnum is an exact integer that is small
enough to fit in a machine word. LispKit fixnums are 64-bit words. Fixnums are signed and encoded
using 2’s complement.
(ratnum? obj) procedure
Returns #t if object obj is a fractional number, i.e. a rational number which isn’t an integer.
(bignum? obj) procedure
Returns #t if object obj is a large integer number, i.e. an integer which isn’t a fixnum.
(flonum? obj) procedure
Returns #t if object obj is a floating-point number.
(cflonum? obj) procedure
Returns #t if object obj is a complex floating-point number.
(exact? obj) procedure
(inexact? obj)
These numerical predicates provide tests for the exactness of a quantity. For any Scheme number, precisely
one of exact? and inexact? is true.

(exact? 3.0) ⇒ #f
(exact? #e3.0) ⇒ #t
(inexact? 3.) ⇒ #t

(exact-integer? obj) procedure
Returns #t if obj is both exact and an integer; otherwise returns #f .

(exact-integer? 32) ⇒ #t
(exact-integer? 32.0) ⇒ #f
(exact-integer? 32/5) ⇒ #f

(finite? obj) procedure
The finite? procedure returns #t on all real numbers except +inf.0 , -inf.0 , and +nan.0 , and
on complex numbers if their real and imaginary parts are both finite. Otherwise it returns #f .

(finite? 3) ⇒ #t
(finite? +inf.0) ⇒ #f
(finite? 3.0+inf.0i) ⇒ #f

LispKit Math 126

LispPad Library Reference 2020-12-23

(infinite? obj) procedure
The infinite? procedure returns #t on the real numbers +inf.0 and -inf.0 , and on complex
numbers if their real or imaginary parts or both are infinite. Otherwise it returns #f .

(infinite? 3) ⇒ #f
(infinite? +inf.0) ⇒ #t
(infinite? +nan.0) ⇒ #f
(infinite? 3.0+inf.0i) ⇒ #t

(nan? obj) procedure
The nan? procedure returns #t on +nan.0 , and on complex numbers if their real or imaginary parts
or both are +nan.0 . Otherwise it returns #f .

(nan? +nan.0) ⇒ #t
(nan? 32) ⇒ #f
(nan? +nan.0+5.0i) ⇒ #t
(nan? 1+2i) ⇒ #f

(positive? x) procedure
Returns #t if number x is positive, i.e. x > 0 .
(negative? x) procedure
Returns #t if number x is negative, i.e. x < 0 .
(zero? z) procedure
Returns #t if number z is zero, i.e. z = 0 .
(even? n) procedure
Returns #t if the integer number n is even.
(odd? n) procedure
Returns #t if the integer number n is odd.

28.3 Exactness and rounding

Scheme distinguishes between numbers that are represented exactly and those that might not be. This
distinction is orthogonal to the dimension of type. A number is exact if it was written as an exact constant
or was derived from exact numbers using only exact operations. A number is inexact if it was written as an
inexact constant, if it was derived using inexact ingredients, or if it was derived using inexact operations.
Rational operations such as + should always produce exact results when given exact arguments. If the
operation is unable to produce an exact result, then it either reports the violation of an implementation
restriction or it silently coerces its result to an inexact value.
(exact z) procedure
(inexact z)
The procedure inexact returns an inexact representation of z. The value returned is the inexact number
that is numerically closest to the argument. For inexact arguments, the result is the same as the argument.
For exact complex numbers, the result is a complex number whose real and imaginary parts are the result
of applying inexact to the real and imaginary parts of the argument, respectively. If an exact argument
has no reasonably close inexact equiv- alent (in the sense of =), then a violation of an implementation
restriction may be reported.
The procedure exact returns an exact representation of z. The value returned is the exact number
that is numerically closest to the argument. For exact arguments, the result is the same as the argument.

LispKit Math 127

LispPad Library Reference 2020-12-23

For inexact non-integral real arguments, the function may return a rational approximation. For inexact
complex arguments, the result is a complex number whose real and imaginary parts are the result of
applying exact to the real and imaginary parts of the argument, respectively. If an inexact argument has
no reasonably close exact equivalent, (in the sense of =), then a violation of an implementation restriction
may be reported.
These procedures implement the natural one-to-one correspondence between exact and inexact in-
tegers throughout an implementation-dependent range.
(approximate x delta) procedure
Procedure approximate approximates floating-point number x returning a rational number which differs
at most delta from x.
(rationalize x y) procedure
The rationalize procedure returns the simplest rational number differing from x by no more than y. A
rational number r1 is simpler than another rational number r2 if r1 = p1/q1 and r2 = p2/q2 (in lowest
terms) and |p1| ≤ |p2| and |q1| ≤ |q2|. Thus 3/5 is simpler than 4/7 . Although not all rationals
are comparable in this ordering (consider 2/7 and 3/5), any interval contains a rational number that
is simpler than every other rational number in that interval (the simpler 2/5 lies between 2/7 and 3/5
). Note that 0 = 0/1 is the simplest rational of all.

(rationalize (exact .3) 1/10) ⇒ 1/3

(floor x) procedure
(ceiling x)
(truncate x)
(round x)
These procedures return integers. floor returns the largest integer not larger than x. ceiling returns
the smallest integer not smaller than x. truncate returns the integer closest to x whose absolute value
is not larger than the absolute value of x. round returns the closest integer to x, rounding to even when
x is halfway between two integers.
If the argument to one of these procedures is inexact, then the result will also be inexact. If an exact value
is needed, the result can be passed to the exact procedure. If the argument is infinite or a NaN, then it
is returned.

(floor -4.3) ⇒ -5.0
(ceiling -4.3) ⇒ -4.0
(truncate -4.3) ⇒ -4.0
(round -4.3) ⇒ -4.0
(floor 3.5) ⇒ 3.0
(ceiling 3.5) ⇒ 4.0
(truncate 3.5) ⇒ 3.0
(round 3.5) ⇒ 4.0 ; inexact
(round 7/2) ⇒ 4 ; exact
(round 7) ⇒ 7

28.4 Operations

(+ z …) procedure
(* z …)
These procedures return the sum or product of their arguments.

LispKit Math 128

LispPad Library Reference 2020-12-23

(+ 34) ⇒ 7
(+ 3) ⇒ 3
(+) ⇒ 0
(* 4) ⇒ 4
(*) ⇒ 1

(- z) procedure
(- z1 z2 …)
(/ _z)
(/ z1 z2 …)
With two or more arguments, these procedures return the difference or quotient of their arguments, as-
sociating to the left. With one argument, however, they return the additive or multiplicative inverse of
their argument.
It is an error if any argument of / other than the first is an exact zero. If the first argument is an exact
zero, the implementation may return an exact zero unless one of the other arguments is a NaN.

(- 3 4) ⇒ -1
(- 3 4 5) ⇒ -6
(- 3) ⇒ -3
(/ 3 4 5) ⇒ 3/20
(/ 3) ⇒ 1/3

(= x …) procedure
(< x …)
(> x …)
(<= x …)
(>= x …)
These procedures return #t if their arguments are (respectively): equal, monotonically increasing, mono-
tonically decreasing, monotonically non-decreasing, or monotonically non-increasing, and #f otherwise.
If any of the arguments are +nan.0 , all the predicates return #f . They do not distinguish between
inexact zero and inexact negative zero.
(max x1 x2 …) procedure
(min x1 x2 …)
These procedures return the maximum or minimum of their arguments.
If any argument is inexact, then the result will also be inexact (unless the procedure can prove that the
inaccuracy is not large enough to affect the result, which is possible only in unusual implementations).
If min or max is used to compare numbers of mixed exactness, and the numerical value of the result
cannot be represented as an inexact number without loss of accuracy, then the procedure reports an
implementation restriction.
(abs x) procedure
The abs procedure returns the absolute value of its argument x.
(square z) procedure
Returns the square of z. This is equivalent to (* z z).

(square 42) ⇒ 1764
(square 2.0) ⇒ 4.0

(sqrt z) procedure
Returns the principal square root of z. The result will have either a positive real part, or a zero real part
and a non-negative imaginary part.

LispKit Math 129

LispPad Library Reference 2020-12-23

(sqrt 9) ⇒ 3
(sqrt -1) ⇒ +i

(exact-integer-sqrt k) procedure
Returns two non-negative exact integers s and r where k = s^2+r and k < (s+1)^2.
(expt z1 z2) procedure
Returns z1 raised to the power z2. For non-zero z1, this is z1^z2 = e^(z2 log z1). The value of 0^z is 1
if (zero? z) , 0 if (real-part z) is positive, and an error otherwise. Similarly for 0.0z, with inexact
results.
(exp z) procedure
(log z)
(log z1 z2)
(sin z)
(cos z)
(tan z)
(asin z)
(acos z)
(atan z)
(atan y x)
These procedures compute the usual transcendental functions. The log procedure computes the natural
logarithm of z (not the base-ten logarithm) if a single argument is given, or the base-z2 logarithm of
z1 if two arguments are given. The asin , acos , and atan procedures compute arc-sine , arc-
cosine , and arc-tangent , respectively. The two-argument variant of atan computes (angle (make-
rectangular x y)) .

28.5 Division and remainder

(gcd n …) procedure
(lcm n …)
These procedures return the greatest common divisor (gcd) or least common multiple (lcm) of their
arguments. The result is always non-negative.

(gcd 32 -36) ⇒ 4
(gcd) ⇒ 0
(lcm 32 -36) ⇒ 288
(lcm 32.0 -36) ⇒ 288.0 ; inexact
(lcm) ⇒ 1

(truncate/ n1 n2.) procedure
(truncate-quotient n1 n2)
(truncate-remainder n1 n2)
These procedures implement number-theoretic integer division. It is an error if n2 is zero. truncate/
returns two integers; the other two procedures return an integer. All the procedures compute a quotient
nq and remainder nr such that n1 = n2 * nq + nr . The three procedures are defined as follows:

(truncate/ n1 n2) =⇒ nq nr
(truncate-quotient n1 n2) =⇒ nq
(truncate-remainder n1 n2) =⇒ nr

LispKit Math 130

LispPad Library Reference 2020-12-23

The remainder nr is determined by the choice of integer nq : nr = n1 − n2 * nq where nq =
truncate(n1/n2) .
For any of the operators, and for integers n1 and n2 with n2 not equal to 0:

(= n1
(+ (* n2 (truncate-quotient n1 n2))

(truncate-remainder n1 n2)))
⇒ #t

provided all numbers involved in that computation are exact.

(truncate/ 5 2) ⇒ 2 1
(truncate/ -5 2) ⇒ -2 -1
(truncate/ 5 -2) ⇒ -2 1
(truncate/ -5 -2) ⇒ 2 -1
(truncate/ -5.0 -2) ⇒ 2.0 -1.0

(floor/ n1 n2) procedure
(floor-quotient n1 n2)
(floor-remainder n1 n2)
These procedures implement number-theoretic integer division. It is an error if n2 is zero. floor/
returns two integers; the other two procedures return an integer. All the procedures compute a quotient
nq and remainder nr such that n1 = n2 * nq + nr . The three procedures are defined as follows:

(floor/ n1 n2) =⇒ nq nr
(floor-quotient n1 n2) =⇒ nq
(floor-remainder n1 n2) =⇒ nr

The remainder nr is determined by the choice of integer nq : nr = n1 − n2 * nq where nq =
floor(n1/n2) .
For any of the operators, and for integers n1 and n2 with n2 not equal to 0:

(= n1
(+ (* n2 (floor-quotient n1 n2))

(floor-remainder n1 n2)))
⇒ #t

provided all numbers involved in that computation are exact.

(floor/ 5 2) ⇒ 2 1
(floor/ -5 2) ⇒ -3 1
(floor/ 5 -2) ⇒ -3 -1
(floor/ -5 -2) ⇒ 2 -1

(quotient n1 n2) procedure
(remainder n1 n2)
(modulo n1 n2)
The quotient and remainder procedures are equivalent to truncate-quotient and truncate-
remainder , respectively, and modulo is equivalent to floor-remainder . These procedures are pro-
vided for backward compatibility with earlier versions of the Scheme language specification.

LispKit Math 131

LispPad Library Reference 2020-12-23

28.6 Fractional numbers

(numerator q) procedure
(denominator q)
These procedures return the numerator or denominator of their rational number q . The result is com-
puted as if the argument was represented as a fraction in lowest terms. The denominator is always positive.
The denominator of 0 is defined to be 1.

(numerator (/ 6 4)) ⇒ 3
(denominator (/ 6 4)) ⇒ 2
(denominator (inexact (/ 6 4))) ⇒ 2.0

28.7 Complex numbers

(make-rectangular x1 x2) procedure
Returns the complex number x1 + x2 * i. Since in LispKit, all complex numbers are inexact, make-
rectangular returns an inexact complex number for all x1 and x2.
(make-polar x1 x2) procedure
Returns a complex number z such that z = x1 * e^(x2 * i), i.e. x1 is the magnitude of the complex number.
The make-polar procedure may return an inexact complex number even if its arguments are exact.
(real-part z) procedure
Returns the real part of the given complex number z.
(imag-part z) procedure
Returns the imaginary part of the given complex number z.
(magnitude z) procedure
Returns the magnitude of the given complex number z. Assuming z = x1 * e^(x2 * i), magnitude returns
x1. The magnitude procedure is the same as abs for a real argument.
(angle z) procedure
Returns the angle of the given complex number z. The angle is a floating-point number between -pi
and pi .

28.8 String representation

(number->string z) procedure
(number->string z radix)
(number->string z radix len)
(number->string z radix len prec)
(number->string z radix len prec noexp)
It is an error if radix is not one of 2, 8, 10, or 16. The procedure number->string takes a number z
and a radix and returns as a string an external representation of the given number in the given radix such
that

(let ((number number)
(radix radix))

(eqv? number (string->number (number->string number radix)
radix)))

LispKit Math 132

LispPad Library Reference 2020-12-23

is true. It is an error if no possible result makes this expression true. If omitted, radix defaults to 10.
If z is inexact, the radix is 10, and the above expression can be satisfied by a result that contains a decimal
point, then the result contains a decimal point and is expressed using the minimum number of digits
(exclusive of exponent and trailing zeroes) needed to make the above expression true. Otherwise, the
format of the result is unspecified. The result returned by number->string never contains an explicit
radix prefix.
The error case can occur only when z is not a complex number or is a complex number with a non-
rational real or imaginary part. If z is an inexact number and the radix is 10, then the above expression is
normally satisfied by a result containing a decimal point. The unspecified case allows for infinities, NaNs,
and unusual representations.
(string->number str) procedure
(string->number str radix)
Returns a number of the maximally precise representation expressed by the given string str. It is an error
if radix is not 2, 8, 10, or 16. If supplied, radix is a default radix that will be overridden if an explicit radix
prefix is present in string (e.g. "#o177"). If radix is not supplied, then the default radix is 10. If string str
is not a syntactically valid notation for a number, or would result in a number that cannot be represented,
then string->number returns #f . An error is never signaled due to the content of string.

(string->number "100") ⇒ 100
(string->number "100" 16) ⇒ 256
(string->number "1e2") ⇒ 100.0

28.9 Bitwise operations

The following bitwise functions operate on integers including fixnums and bignums.
(bitwise-not n) procedure
Returns the bitwise complement of n; i.e. all 1 bits are changed to 0 bits and all 0 bits to 1 bits.
(bitwise-and n …) procedure
Returns the bitwise and of the given integer arguments n ….
(bitwise-ior n …) procedure
Returns the bitwise inclusive or of the given integer arguments n ….
(bitwise-xor n …) procedure
Returns the bitwise exclusive or (xor) of the given integer arguments n ….
(bitwise-if mask n m) procedure
Merge the integers n and m, via integer mask determining from which integer to take each bit. That is,
if the k-th bit of mask is 0, then the k-th bit of the result is the k-th bit of n, otherwise the k-th bit of m.
bitwise-if is defined in the following way:

(define (bitwise-if mask n m)
(bitwise-ior (bitwise-and mask n) (bitwise-and (bitwise-not mask) m)))

(bit-count n) procedure
Returns the population count of 1’s if n >= 0, or 0’s, if n < 0. The result is always non-negative. The R6RS
analogue bitwise-bit-count procedure is incompatible as it applies bitwise-not to the population
count before returning it if n is negative.

LispKit Math 133

LispPad Library Reference 2020-12-23

(bit-count 0) ⇒ 0
(bit-count -1) ⇒ 0
(bit-count 7) ⇒ 3
(bit-count 13) ⇒ 3
(bit-count -13) ⇒ 2
(bit-count 30) ⇒ 4
(bit-count -30) ⇒ 4
(bit-count (expt 2 100)) ⇒ 1
(bit-count (- (expt 2 100))) ⇒ 100
(bit-count (- (+ 1 (expt 2 100)))) ⇒ 1

(integer-length n) procedure
Returns the number of bits needed to represent n, i.e.

(ceiling (/ (log (if (negative? integer)
(- integer)
(+ 1 integer)))

(log 2)))

The result is always non-negative. For non-negative n, this is the number of bits needed to represent n in
an unsigned binary representation. For all n, (+ 1 (integer-length i)) is the number of bits needed
to represent n in a signed two’s-complement representation.
(first-bit-set n) procedure
Returns the index of the least significant 1 bit in the two’s complement representation of n. If n is 0, then
−1 is returned.

(first-bit-set 0) ⇒ -1
(first-bit-set 1) ⇒ 0
(first-bit-set -4) ⇒ 2

(bit-set? n k) procedure
kmust be non-negative. The bit-set? procedure returns #t if the k-th bit is 1 in the two’s complement
representation of n, and #f otherwise. This is the result of the following computation:

(not (zero? (bitwise-and (bitwise-arithmetic-shift-left 1 k) n)))

(copy-bit n k b) procedure
k must be non-negative, and b must be either 0 or 1. The copy-bit procedure returns the result of
replacing the k-th bit of n by the k-th bit of b, which is the result of the following computation:

(bitwise-if (bitwise-arithmetic-shift-left 1 k)
(bitwise-arithmetic-shift-left b k)
n)

(arithmetic-shift n count) procedure
If count > 0, shifts integer n left by count bits; otherwise, shifts fixnum n right by count bits. In general,
this procedure returns the result of the following computation: (floor (* n (expt 2 count))) .

(arithmetic-shift -6 -1) ⇒ -3
(arithmetic-shift -5 -1) ⇒ -3
(arithmetic-shift -4 -1) ⇒ -2
(arithmetic-shift -3 -1) ⇒ -2
(arithmetic-shift -2 -1) ⇒ -1
(arithmetic-shift -1 -1) ⇒ -1

LispKit Math 134

LispPad Library Reference 2020-12-23

(arithmetic-shift-left n count) procedure
Returns the result of arithmetically shifting n to the left by count bits. count must be non-negative. The
arithmetic-shift-left procedure behaves the same as arithmetic-shift .
(arithmetic-shift-right n count) procedure
Returns the result of arithmetically shifting n to the right by count bits. count must be non-negative.
(arithmetic-shift-right n m) behaves the same as (arithmetic-shift n (fx- m)) .

28.10 Fixnum operations

LispKit supports arbitrarily large exact integers. Internally, it has two different representations, one for
smaller integers and one for the rest. These are colloquially known as fixnums and bignums respectively.
In LispKit, a fixnum is represented as a 64 bit signed integer which is encoded using two-complement.
Fixnum operations perform integer arithmetic on their fixnum arguments. If any argument is not a fixnum,
or if the mathematical result is not representable as a fixnum, it is an error. In particular, this means that
fixnum operations may return a mathematically incorrect fixnum in these situations without raising an
error.
(integer->fixnum n) procedure
integer->fixnum coerces a given integer n into a fixnum. If n is a fixnum already, n is returned by
integer->fixnum . If n is a bignum, then the first word of the bignum is returned as the result of
integer->fixnum .
(fx+ n m) procedure
(fx- n m)
(fx* n m)
(fx/ n m)
These procedures return the sum, the difference, the product and the quotient of their two fixnum argu-
ments n and m. These procedures may overlow without reporting an error.
(fx= n m) procedure
(fx< n m)
(fx> n m)
(fx<= n m)
(fx>= n m)
These procedures implement the comparison predicates. They return #t if n = m, n < m, n > m, n <=
m, or n >= m respectively
(fx1+ n) procedure
Increments the fixnum n by one and returns the value. This procedure may overflow without raising an
error.
(fx1- n) procedure
Decrements the fixnum n by one and returns the value. This procedure may overflow without raising an
error.
(fxzero? n) procedure
Returns #t if fixnum n equals to 0.
(fxpositive? n) procedure
Returns #t if fixnum n is positive, i.e. n > 0.
(fxnegative? n) procedure
Returns #t if fixnum n is negative, i.e. n < 0.

LispKit Math 135

LispPad Library Reference 2020-12-23

(fxabs n) procedure
Returns the absolute value of its fixnum argument n.
(fxremainder n m) procedure
This procedure returns a value r such that the following equation holds: n = m * q + r where q is the
largest number of multiples of m that will fit inside n. The sign of m gets ignored. This means that
(fxremainder n m) and (fxremainder n (- m)) always return the same answer.

(fxremainder 13 5) ⇒ 3
(fxremainder 13 -5) ⇒ 3
(fxremainder -13 5) ⇒ -3
(fxremainder -13 -5) ⇒ -3

(fxmodulo n m) procedure
This procedure computes a remainder similar to (fxremainder n m) , but when (fxremainder n m)
has a different sign than m, (fxmodulo n m) returns (+ (fxremainder n m) m) instead.

(fxmodulo 13 5) ⇒ 3
(fxmodulo 13 -5) ⇒ -2
(fxmodulo -13 5) ⇒ 2
(fxmodulo -13 -5) ⇒ -3

(fxsqrt n) procedure
Approximates the square root s of fixnum n such that s is the biggest fixnum for which s × s ≤ n.
(fxnot n) procedure
Returns the bitwise-logical inverse for fixnum n.

(fxnot 0) ⇒ -1
(fxnot -1) ⇒ 0
(fxnot 1) ⇒ -2
(fxnot -34) ⇒ 33

(fxand n m) procedure
Returns the bitwise-logical and for n and m.

(fxand #x43 #x0f) ⇒ 3
(fxand #x43 #xf0) ⇒ 64

(fxior n m) procedure
Returns the bitwise-logical inclusive or for n and m.
(fxxor n m) procedure
Returns the bitwise-logical exclusive or (xor) for n and m.
(fxif mask n m) procedure
Merges the bit sequences n andm, with bit sequencemask determining from which sequence to take each
bit. That is, if the k-th bit of mask is 1, then the k-th bit of the result is the k-th bit of n, otherwise it’s the
k-th bit of m.

(fxif 3 1 8) ⇒ 9
(fxif 3 8 1) ⇒ 0
(fxif 1 1 2) ⇒ 3
(fxif #b00111100 #b11110000 #b00001111) ⇒ #b00110011 = 51

LispKit Math 136

LispPad Library Reference 2020-12-23

fxif can be implemented via (fxior (fxand mask n) (fxand (fxnot mask) m))) .
(fxarithmetic-shift n count) procedure
If count > 0, shifts fixnum n left by count bits; otherwise, shifts fixnum n right by count bits. The absolute
value of count must be less than (fixnum-width) .

(fxarithmetic-shift 8 2) ⇒ 32
(fxarithmetic-shift 4 0) ⇒ 4
(fxarithmetic-shift 8 -1) ⇒ 4
(fxarithmetic-shift -1 62) ⇒ -4611686018427387904

fxarithmetic-shift can be implemented via (floor (fx* n (expt 2 m))) if this computes to a
fixnum.
(fxarithmetic-shift-left n count) procedure
(fxlshift n count)
Returns the result of arithmetically shifting n to the left by count bits. count must be non-negative,
and less than (fixnum-width) . The fxarithmetic-shift-left procedure behaves the same as
fxarithmetic-shift .
(fxarithmetic-shift-right n count) procedure
(fxrshift n count)
Returns the result of arithmetically shifting n to the right by count bits. count must be non-negative, and
less than (fixnum-width) . (fxarithmetic-shift-right n m) behaves the same as (fxarithmetic-
shift n (fx- m)) .
(fxlogical-shift-right n count) procedure
(fxlrshift n count)
Returns the result of logically shifting n to the right by count bits. count must be non-negative, and less
than (fixnum-width) .

(fxlogical-shift 8 2) ⇒ 2
(fxlogical-shift 4 0) ⇒ 4
(fxlogical-shift -1 62) ⇒ 3

(fxbit-count n) procedure
If n is non-negative, this procedure returns the number of 1 bits in the two’s complement representation
of n. Otherwise, it returns the result of the following computation: (fxnot (fxbit-count (fxnot
n))) .
(fxlength n) procedure
Returns the number of bits needed to represent n if it is positive, and the number of bits needed to represent
(fxnot n) if it is negative, which is the fixnum result of the following computation:

(do ((res 0 (fx1+ res))
(bits (if (fxnegative? n) (fxnot n) n)

(fxarithmetic-shift-right bits 1)))
((fxzero? bits) res))

(fxfirst-bit-set obj) procedure
Returns the index of the least significant 1 bit in the two’s complement representation of n. If n is 0, then
−1 is returned.

LispKit Math 137

LispPad Library Reference 2020-12-23

(fxfirst-bit-set 0) ⇒ -1
(fxfirst-bit-set 1) ⇒ 0
(fxfirst-bit-set -4) ⇒ 2

(fxbit-set? n k) procedure
k must be non-negative and less than (fixnum-width) . The fxbit-set? procedure returns #t if the
k-th bit is 1 in the two’s complement representation of n, and #f otherwise. This is the fixnum result of
the following computation:

(not (fxzero? (fxand n (fxarithmetic-shift-left 1 k))))

(fxcopy-bit n k b) procedure
k must be non-negative and less than (fixnum-width) . b must be 0 or 1. The fxcopy-bit procedure
returns the result of replacing the k-th bit of n by b, which is the result of the following computation:

(fxif (fxarithmetic-shift-left 1 k)
(fxarithmetic-shift-left b k)
n)

(fxmin n m) procedure
Returns the minimum of fixnums n and m.
(fxmax n m) procedure
Returns the maximum of fixnums n and m.
(fxrandom max) procedure
(fxrandom min max)
Returns a random number between min (inclusive) and max (exclusive). If min is not provided, then 0
is assumed to be the minimum bound. min is required to be non-negative, max is required to be bigger
than min.
(fixnum-width) procedure
Returns the number of bits for representing fixnums. The current implementation of LispKit always returns
64.
(least-fixnum) procedure
Returns the smallest possible fixnum. The current implementation of LispKit always returns -
9223372036854775808.
(greatest-fixnum) procedure
Returns the greatest possible fixnum. The current implementation of LispKit always returns
9223372036854775807.

28.11 Floating‐point operations

(real->flonum x) procedure
Returns the best floating-point (flonum) representation of x.
(fl+ x y) procedure
(fl* x y)
These procedures return the flonum sum or product of their flonum arguments x and y. In general, they
return the flonum that best approximates the mathematical sum or product.

LispKit Math 138

LispPad Library Reference 2020-12-23

(fl- x y) procedure
(fl/ x y)
These procedures return the flonum difference or quotient of their flonum arguments x and y. In general,
they return the flonum that best approximates the mathematical difference or quotient.
(flzero? x) procedure
Returns #t if x = 0.0, #f otherwise.
(flpositive? x) procedure
Returns #t if x > 0.0, #f otherwise.
(flnegative? x) procedure
Returns #t if x < 0.0, #f otherwise.
(fl= x y) procedure
(fl< x y)
(fl> x y)
(fl<= x y)
(fl>= x y)
These procedures return #t if their flonum arguments x and y are respectively: equal, monotonically
increasing, monotonically decreasing, monotonically nondecreasing, or monotonically nonincreasing, #f
otherwise.

(fl= +inf.0 +inf.0) ⇒ #t
(fl= -inf.0 +inf.0) ⇒ #f
(fl= -inf.0 -inf.0) ⇒ #t
(fl= 0.0 -0.0) ⇒ #t
(fl< 0.0 -0.0) ⇒ #f
(fl= +nan.0 123.0) ⇒ #f
(fl< +nan.0 123.0) ⇒ #f

(flabs x) procedure
Returns the absolute value of x as a flonum.
(flmin x y) procedure
Returns the minimum value of x and y.
(flmax x y) procedure
Returns the maximum value of x and y.

LispKit Math 139

29 LispKit Object

Library (lispkit object) implements a simple, delegation-based object system for LispKit. It provides
procedural and declarative interfaces for objects and classes. The class system is optional. It mostly
provides means to define and manage new object types and construct objects using object constructors.

29.1 Introduction

Similar to other Scheme and Lisp-based object systems, methods of objects are defined in terms of
object/class-specific specializations of generic procedures. A generic procedure consists of methods for
the various objects/classes it supports. A generic procedure performs a dynamic dispatch on the first
parameter (the self parameter) to determine the applicable method.

29.1.1 Generic procedures

Generic procedures can be defined using the define-generic form. Here is an example which defines
three generic methods, one with only a self parameter, and two with three parameters self , x and
y . The last generic procedure definition includes a default method which is applicable to all objects
for which there is no specific method. When a generic procedure without default is applied to an object
that does not define its own method implementation, an error gets signaled.

(define-generic (point-coordinates self))
(define-generic (set-point-coordinates! self x y))
(define-generic (point-move! self x y)

(let ((coord (point-coordinate self)))
(set-point-coordinate! self (+ (car coord) x) (+ (cdr coord) y))))

29.1.2 Objects

An object encapsulates a list of methods each implementing a generic procedure. These methods are
regular closures which can share mutable state. Objects do not have an explicit notion of a field or slot as
in other Scheme or Lisp-based object systems. Fields/slots need to be implemented via generic procedures
and method implementations sharing state. Here is an example explaining this approach:

(define (make-point x y)
(object ()

((point-coordinates self) (cons x y))
((set-point-coordinates! self nx ny) (set! x nx) (set! y ny))
((object->string self) (string-append (object->string x) "/" (object->string y)))))

This is a function creating new point objects. The x and y parameters of the constructor function are
used for representing the state of the point object. The created point objects implement three generic
procedures: point-coordinates , set-point-coordinates , and object->string . The latter
procedure is defined directly by the library and, in general, used for creating a string representation

140

LispPad Library Reference 2020-12-23

of any object. By implementing the object->string method, the behavior gets customized for the
object.
The following lines of code illustrate how point objects can be used:

(define pt (make-point 25 37))
pt => #object:#<box (...)>
(object->string pt) => "25/37"
(point-coordinates pt) => (25 . 37)
(set-point-coordinates! pt 5 6)
(object->string pt) => "5/6"
(point-coordinates pt) => (5 . 6)

29.1.3 Inheritance

The LispKit object system supports inheritance via delegation. The following code shows how colored
points can be implemented by delegating all point functionality to the previous implementation and by
simply adding only color-related logic.

(define-generic (point-color self) #f)
(define (make-colored-point x y color)

(object ((super (make-point x y)))
((point-color self) color)
((object->string self)

(string-append (object->string color) ":" (invoke (super object->string) self)))))

The object created in function make-colored-point inherits all methods from object super which gets
set to a new point object. It adds a new method to generic procedure point-color and redefines the
object->string method. The redefinition is implemented in terms of the inherited object->string
method for points. The form invoke can be used to refer to overridden methods in delegatee objects.
Thus, (invoke (super object->string) self) calls the object->string method of the super
object but with the identity (self) of the colored point.
The following interaction illustrates the behavior:

(define cpt (make-colored-point 100 50 'red))
(point-color cpt) => red
(point-coordinates cpt) => (100 . 50)
(set-point-coordinates! cpt 101 51)
(object->string cpt) => "red:101/51"

Objects can delegate functionality to multiple delegatees. The order in which they are listed determines
the methods which are being inherited in case there are conflicts, i.e. multiple delegatees implement a
method for the same generic procedure.

29.1.4 Classes

Classes add syntactic sugar, simplying the creation and management of objects. They play the following
role in the object-system of LispKit:
1. A class defines a constructor for objects represented by this class.
2. Each class defines an object type, which can be used to distinguish objects created by the same
constructor and supporting the same methods.

3. A class can inherit functionality from several other classes, making it easy to reuse functionality.

LispKit Object 141

LispPad Library Reference 2020-12-23

4. Classes are first-class objects supporting a number of class-related procedures.
The following code defines a point class with similar functionality as above:

(define-class (point x y) ()
(object ()
((point-coordinates self) (cons x y))
((set-point-coordinates! self nx ny) (set! x nx) (set! y ny))
((object->string self) (string-append (object->string x) "/" (object->string y)))))

Instances of this class are created by using the generic procedure make-instance which is implemented
by all class objects:

(define pt2 (make-instance point 82 10))
pt2 => #point:#<box (...)>
(object->string pt2) => "82/10"

Each object created by a class implements a generic procedure object-class referring to the class of the
object. Since classes are objects themselves we can obtain their name with generic procedure class-name
:

(object-class pt2) => #class:#<box (...)>
(class-name (object-class pt2)) => point
(instance-of? point pt2) => #t
(instance-of? point pt) => #f

Generic procedure instance-of? can be used to determine whether an object is a direct or indirect
instance of a given class. The last two lines above show that pt2 is an instance of point , but pt is not,
even though it is functionally equivalent.
The following definition re-implements the colored point example from above using a class:

(define-class (colored-point x y color) (point)
(if (or (< x 0) (< y 0))

(error "coordinates are negative: ($0; $1)" x y))
(object ((super (make-instance point x y)))
((point-color self) color)
((object->string self)

(string-append (object->string color) ":" (invoke (super object->string) self)))))

The following lines illustrate the behavior of colored-point objects vs point objects:

(point-color cpt2) => blue
(point-coordinates cpt2) => (128 . 256)
(set-point-coordinates! cpt2 64 32)
(object->string cpt2) => "blue:64/32"
(instance-of? point cpt2) => #t
(instance-of? colored-point cpt2) => #t
(instance-of? colored-point cpt) => #f
(class-name (object-class cpt2)) => colored-point

29.2 Procedural object interface

(object? expr) procedure

LispKit Object 142

LispPad Library Reference 2020-12-23

(make-object) procedure

(make-object delegate …)
(method obj generic) procedure

(object-methods obj) procedure

(add-method! obj generic method) procedure

(delete-method! obj generic) procedure

(make-generic-procedure …) procedure

29.3 Declarative object interface

(object …) syntax

(define-generic …) syntax

(invoke …) syntax

29.4 Procedural class interface

(class? expr) procedure

root object

(make-class name superclasses constructor) procedure

29.4.1 Instance methods

(object-class self) generic procedure

(object-equal? self obj) generic procedure

(object->string self) generic procedure

LispKit Object 143

LispPad Library Reference 2020-12-23

29.4.2 Class methods

(class-name self) generic procedure

(class-direct-superclasses self) generic procedure

(subclass? self other) generic procedure

(make-instance self . args) generic procedure

(instance-of? self obj) generic procedure

29.5 Declarative class interface

(define-class …) syntax

LispKit Object 144

30 LispKit Port

Ports represent abstractions for handling input and output. They are used to access files, devices, and
similar things on the host system on which LispKit is running.
An input port is a LispKit object that can deliver data upon command, while an output port is an object
that can accept data. In LispKit, input and output port types are disjoint, i.e. a port is either an input or
an output port.
Different port types operate on different data. LispKit provides two differnt types of ports: textual ports
and binary ports. Textual ports and binary ports are disjoint, i.e. a port is either textual or binary.
A textual port supports reading or writing of individual characters from or to a backing store containing
characters using read-char and write-char , and it supports operations defined in terms of characters,
such as read and write .
A binary port supports reading or writing of individual bytes from or to a backing store containing bytes
using read-u8 and write-u8 below, as well as operations defined in terms of bytes.

30.1 Default ports

current-output-port parameter object
current-input-port
current-error-port
These parameter objects represent the current default input port, output port, or error port (an output
port), respectively. These parameter objects can be overridden with parameterize .
default-output-port constant
default-input-port
These two ports are the initial values of current-output-port and current-input-port when LispKit
gets initialized. They are typically referring to the default output and input device of the system on which
LispKit is running.

30.2 Predicates

(port? obj) procedure
Returns #t if obj is a port object; otherwise #f is returned.
(input-port? obj) procedure
(output-port? obj)
These predicates return #t if obj is an input port or output port; otherwise they return #f .
(textual-port? obj) procedure
(binary-port? obj)
These predicates return #t if obj is a textual or a binary port; otherwise they return #f .

145

LispPad Library Reference 2020-12-23

(input-port-open? port) procedure
(output-port-open? port)
Returns #t if port is still open and capable of performing input or output, respectively, and #f other-
wise.
(eof-object? obj) procedure
Returns #t if obj is an end-of-file object, otherwise returns #f .

30.3 General ports

(close-port port) procedure
(close-input-port port)
(close-output-port port)
Closes the resource associated with port, rendering the port incapable of delivering or accepting data. It
is an error to apply close-input-port and close-output-port to a port which is not an input or
output port, respectively. All procedures for closing ports have no effect if the provided port has already
been closed.
(with-input-from-port port thunk) procedure
(with-output-to-port port thunk)
The given port is made to be the value returned by current-input-port or current-output-port
(as used by (read) , (write obj) , and so forth). The thunk is then called with no arguments. When
the thunk returns, the port is closed and the previous default is restored. It is an error if thunk does not
accept zero arguments. Both procedures return the values yielded by thunk. If an escape procedure is
used to escape from the continuation of these procedures, they behave exactly as if the current input or
output port had been bound dynamically with parameterize .
(call-with-port port proc) procedure
The call-with-port procedure calls proc with port as an argument. It is an error if proc does not accept
one argument.
If proc returns, then the port is closed automatically and the values yielded by proc are returned. If proc
does not return, then the port will not be closed automatically unless it is possible to prove that the port
will never again be used for a read or write operation.
This is necessary, because LispKit’s escape procedures have unlimited extent and thus it is possible to
escape from the current continuation but later to resume it. If LispKit would be permitted to close the
port on any escape from the current continuation, then it would be impossible to write portable code
using both call-with-current-continuation and call-with-port .

30.4 File ports

(open-input-file filepath) procedure
(open-input-file filepath fail)
Takes a filepath referring to an existing file and returns a textual input port that is capable of delivering
data from the file. If the file does not exist or cannot be opened, an error that satisfies file-error? is
signaled if argument fail is not provided. If fail is provided, it is returned in case an error occured.
(open-binary-input-file filepath) procedure
(open-binary-input-file filepath fail)

LispKit Port 146

LispPad Library Reference 2020-12-23

Takes a filepath referring to an existing file and returns a binary input port that is capable of delivering
data from the file. If the file does not exist or cannot be opened, an error that satisfies file-error? is
signaled if argument fail is not provided. If fail is provided, it is returned in case an error occured.
(open-output-file filepath) procedure
(open-output-file filepath fail)
Takes a filepath referring to an output file to be created and returns a textual output port that is capable
of writing data to the new file. If a file with the given name exists already, the effect is unspecified. If the
file cannot be opened, an error that satisfies file-error? is signaled if argument fail is not provided.
If fail is provided, it is returned in case an error occured.
(open-binary-output-file filepath) procedure
(open-binary-output-file filepath fail)
Takes a filepath referring to an output file to be created and returns a binary output port that is capable
of writing data to the new file. If a file with the given name exists already, the effect is unspecified. If the
file cannot be opened, an error that satisfies file-error? is signaled if argument fail is not provided.
If fail is provided, it is returned in case an error occured.
(with-input-from-file filepath thunk) procedure
(with-output-to-file filepath thunk)
The file determined by filepath is opened for input or output as if by open-input-file or open-output-
file , and the new port is made to be the value returned by current-input-port or current-output-
port (as used by (read) , (write obj) , and so forth). The thunk is then called with no arguments.
When the thunk returns, the port is closed and the previous default is restored. It is an error if thunk does
not accept zero arguments. Both procedures return the values yielded by thunk. If an escape procedure
is used to escape from the continuation of these procedures, they behave exactly as if the current input or
output port had been bound dynamically with parameterize .
(call-with-input-file filepath proc) procedure
(call-with-output-file filepath proc)
These procedures create a textual port obtained by opening the file referred to by filepath (a string) for
input or output as if by open-input-file or open-output-file . This port and proc are then passed
to a procedure equivalent to call-with-port . It is an error if proc does not accept one argument.

30.5 String ports

(open-input-string str) procedure
Takes a string and returns a textual input port that delivers characters from the string. If the string is
modified, the effect is unspecified.
(open-output-string) procedure
Returns a textual output port that will accumulate characters for retrieval by get-output-string .

(parameterize ((current-output-port (open-output-string)))
(display "piece")
(display " by piece ")
(display "by piece.")
(get-output-string (current-output-port)))

⇒ "piece by piece by piece."

(get-output-string port) procedure
It is an error if port was not created with open-output-string .

LispKit Port 147

LispPad Library Reference 2020-12-23

Returns a string consisting of the characters that have been output to port so far in the order they were
output.

(parameterize ((current-output-port (open-output-string)))
(display "piece")
(display " by piece ")
(display "by piece.")
(newline)
(get-output-string (current-output-port)))

⇒ "piece by piece by piece.\n"

(with-input-from-string str thunk) procedure
String str is opened for input as if by open-input-string , and the new textual string port is made to
be the value returned by current-input-port . The thunk is then called with no arguments. When the
thunk returns, the port is closed and the previous default is restored. It is an error if thunk does not accept
zero arguments. with-input-from-string returns the values yielded by thunk. If an escape procedure
is used to escape from the continuation of these procedures, they behave exactly as if the current input
port had been bound dynamically with parameterize .
(with-output-to-string thunk) procedure
A new string output port is created as if by calling open-output-string , and the new port is made to
be the value returned by current-output-port . The thunk is then called with no arguments. When
the thunk returns, the port is closed and the previous default is restored. It is an error if thunk does not
accept zero arguments. Both procedures return the values yielded by thunk. If an escape procedure is
used to escape from the continuation of these procedures, they behave exactly as if the current input or
output port had been bound dynamically with parameterize .
(call-with-output-string proc) procedure
The procedure proc is called with one argument, a textual output port. The values yielded by proc are
ignored. When proc returns, call-with-output-string returns the port’s accumulated output as a
string.
This procedure is defined as follows:

(define (call-with-output-string procedure)
(let ((port (open-output-string)))

(procedure port)
(get-output-string port)))

30.6 Bytevector ports

(open-input-bytevector bvector) procedure
Takes a bytevector bvector and returns a binary input port that delivers bytes from the bytevector bvector.
(open-output-bytevector) procedure
Returns a binary output port that will accumulate bytes for retrieval by get-output-bytevector .
(get-output-bytevector port) procedure
It is an error if portwas not created with open-output-bytevector . get-output-bytevector returns
a bytevector consisting of the bytes that have been output to the port so far in the order they were output.
(call-with-output-bytevector proc) procedure
The procedure proc gets called with one argument, a binary output port. The values yielded by procedure
proc are ignored. When it returns, call-with-output-bytevector returns the port’s accumulated
output as a newly allocated bytevector.

LispKit Port 148

LispPad Library Reference 2020-12-23

This procedure is defined as follows:

(define (call-with-output-bytevector procedure)
(let ((port (open-output-bytevector)))

(procedure port)
(get-output-bytevector port)))

30.7 URL ports

(open-input-url url) procedure
(open-input-url url timeout)
(open-input-url url timeout fail)
Takes a url referring to an existing resource and returns a textual input port that is capable of reading data
from the resource (e.g. via HTTP). timeout specifies a timeout in seconds as a flonum for the operation to
wait. If no data is available, the procedure will fail either by throwing an exception or by returning value
fail if provided.
(open-binary-input-url url) procedure
(open-binary-input-url url timeout)
(open-binary-input-url url timeout fail)
Takes a url referring to an existing resource and returns a binary input port that is capable of reading data
from the resource (e.g. via HTTP). timeout specifies a timeout in seconds as a flonum for the operation to
wait. If no data is available, the procedure will fail either by throwing an exception or by returning value
fail if provided.
(with-input-from-url url thunk) procedure
The given url is opened for input as if by open-input-url , and the new input port is made to be the
value returned by current-input-port . The thunk is then called with no arguments. When the thunk
returns, the port is closed and the previous default is restored. It is an error if thunk does not accept zero
arguments. The procedure returns the values yielded by thunk. If an escape procedure is used to escape
from the continuation of this procedure, they behave exactly as if current-input-port had been bound
dynamically with parameterize .
(call-with-input-url url proc) procedure
call-with-input-url creates a textual input port by opening the resource at url for input as if by open-
input-url . This port and proc are then passed to a procedure equivalent to call-with-port . It is an
error if proc does not accept one argument. Here is an implementation of call-with-input-url :

(define (call-with-input-url url proc)
(let* ((port (open-input-url url))

(res (proc port)))
(close-input-port port)
res))

(try-call-with-input-url url proc thunk) procedure
try-call-with-input-url creates a textual input port by opening the resource at url for input as if by
open-input-url . This port and proc are then passed to a procedure equivalent to call-with-port in
case it was possible to open the port. If the port couldn’t be opened, thunk gets invoked. It is an error if
proc does not accept one argument and if thunk requires at least one argument. Here is an implementation
of try-call-with-input-url :

LispKit Port 149

LispPad Library Reference 2020-12-23

(define (try-call-with-input-url url proc thunk)
(let ((port (open-input-url url 60.0 #f)))

(if port
(car (cons (proc port) (close-input-port port)))
(thunk))))

30.8 Asset ports

(open-input-asset name type) procedure
(open-input-asset name type dir)
This function can be used to open a textual LispKit asset file located in one of LispKit’s asset paths. An
asset is identified via a file name, a file type, and an optional directory path dir. name, type, and dir are
all strings. open-input-asset constructs a relative file path in the following way (assuming name does
not have a suffix already):
dir/name.type

It then searches the asset paths in their given order for a file matching this relative file path. Once the
first matching file is found, the file is opened as a text file and a corresponding textual input port that is
capable of reading data from the file is returned. It is an error if no matching asset is found.
(open-binary-input-asset name type) procedure
(open-binary-input-asset name type dir)
This function can be used to open a binary LispKit asset file located in one of LispKit’s asset paths. An
asset is identified via a file name, a file type, and an optional directory path dir. name, type, and dir are
all strings. open-input-asset constructs a relative file path in the following way (assuming name does
not have a suffix already):
dir/name.type

It then searches the asset paths in their given order for a file matching this relative file path. Once the
first matching file is found, the file is opened as a binary file and a corresponding binary input port that
is capable of reading data from the file is returned. It is an error if no matching asset is found.

30.9 Reading from ports

If port is omitted from any input procedure, it defaults to the value returned by (current-input-port)
. It is an error to attempt an input operation on a closed port.
(read) procedure
(read port)
The read procedure converts external representations of Scheme objects into the objects themselves by
parsing the input. read returns the next object parsable from the given textual input port, updating port
to point to the first character past the end of the external representation of the object.
If an end of file is encountered in the input before any characters are found that can begin an object,
then an end-of-file object is returned. The port remains open, and further attempts to read will also
return an end-of-file object. If an end of file is encountered after the beginning of an object’s external
representation, but the external representation is incomplete and therefore not parsable, an error that
satisfies read-error? is signaled.

LispKit Port 150

LispPad Library Reference 2020-12-23

(read-char) procedure
(read-char port)
Returns the next character available from the textual input port, updating port to point to the following
character. If no more characters are available, an end-of-file object is returned.
(peek-char) procedure
(peek-char port)
Returns the next character available from the textual input port, but without updating port to point to the
following character. If no more characters are available, an end-of-file object is returned.
Note: The value returned by a call to peek-char is the same as the value that would have been returned
by a call to read-char with the same port. The only difference is that the very next call to read-char or
peek-char on that port will return the value returned by the preceding call to peek-char . In particular,
a call to peek-char on an interactive port will hang waiting for input whenever a call to read-char
would have hung.
(char-ready?) procedure
(char-ready? port)
Returns #t if a character is ready on the textual input port and returns #f otherwise. If char-ready?
returns #t then the next read-char operation on the given port is guaranteed not to hang. If the port
is at end of file, then char-ready? returns #t.
Rationale: The char-ready? procedure exists to make it possible for a program to accept characters
from interactive ports without getting stuck waiting for input. Any input editors associated with such ports
must ensure that characters whose existence has been asserted by char-ready? cannot be removed
from the input. If char-ready? were to return #f at end of file, a port at end of file would be
indistinguishable from an interactive port that has no ready characters.
(read-token) procedure
(read-token port)
(read-token port charset)
Returns the next token of text available from the textual input port, updating port to point to the following
character. A token is a non-empty sequence of characters delimited by characters from character set charset.
Tokens never contain characters from charset. charset defaults to the set of all whitespace and newline
characters.
(read-line obj) procedure
(read-line port)
Returns the next line of text available from the textual input port, updating port to point to the following
character. If an end of line is read, a string containing all of the text up to (but not including) the end
of line is returned, and port is updated to point just past the end of line. If an end of file is encountered
before any end of line is read, but some characters have been read, a string containing those characters is
returned. If an end of file is encountered before any characters are read, an end-of-file object is returned.
For the purpose of this procedure, an end of line consists of either a linefeed character, a carriage return
character, or a sequence of a carriage return character followed by a linefeed character.
(read-string k) procedure
(read-string k port)
Reads the next k characters, or as many as are available before the end of file, from the textual input port
into a newly allocated string in left-to-right order and returns the string. If no characters are available
before the end of file, an end-of-file object is returned.
(read-u8) procedure
(read-u8 port)

LispKit Port 151

LispPad Library Reference 2020-12-23

Returns the next byte available from the binary input port, updating port to point to the following byte. If
no more bytes are available, an end-of-file object is returned.
(peek-u8 obj) procedure
Returns the next byte available from the binary input port, but without updating port to point to the
following byte. If no more bytes are available, an end-of-file object is returned.
(u8-ready?) procedure
(u8-ready? port)
Returns #t if a byte is ready on the binary input port and returns #f otherwise. If u8-ready? returns
#t then the next read-u8 operation on the given port is guaranteed not to hang. If the port is at end of
file then u8-ready? returns #t .
(read-bytevector k) procedure
(read-bytevector k port)
Reads the next k bytes, or as many as are available before the end of file, from the binary input port into
a newly allocated bytevector in left-to-right order and returns the bytevector. If no bytes are available
before the end of file, an end-of-file object is returned.
(read-bytevector! bvector) procedure
(read-bytevector! bvector port)
(read-bytevector! bvector port start)
(read-bytevector! bvector port start end)
Reads the next end − start bytes, or as many as are available before the end of file, from the binary input
port into bytevector bvector in left-to-right order beginning at the start position. If end is not supplied,
reads until the end of bytevector bvector has been reached. If start is not supplied, reads beginning at
position 0. Returns the number of bytes read. If no bytes are available, an end-of-file object is returned.

30.10 Writing to ports

If port is omitted from any output procedure, it defaults to the value returned by (current-output-
port) . It is an error to attempt an output operation on a closed port.
(write obj) procedure
(write obj port)
Writes a representation of obj to the given textual output port. Strings that appear in the written represen-
tation are enclosed in quotation marks, and within those strings backslash and quotation mark characters
are escaped by backslashes. Symbols that contain non-ASCII characters are escaped with vertical lines.
Character objects are writ- ten using the #\ notation.
If obj contains cycles which would cause an infinite loop using the normal written representation, then at
least the objects that form part of the cycle will be represented using datum labels. Datum labels will not
be used if there are no cycles.
(write-shared obj) procedure
(write-shared obj port)
The write-shared procedure is the same as write , except that shared structures will be represented
using datum labels for all pairs and vectors that appear more than once in the output.
(write-simple obj) procedure
(write-simple obj port)

LispKit Port 152

LispPad Library Reference 2020-12-23

The write-simple procedure is the same as write , except that shared structures will never be rep-
resented using datum labels. This can cause write-simple not to terminate if obj contains circular
structures.
(display obj) procedure
(display obj port)
Writes a representation of obj to the given textual output port. Strings that appear in the written repre-
sentation are output as if by write-string instead of by write . Symbols are not escaped. Character
objects appear in the representation as if written by write-char instead of by write . display will
not loop forever on self-referencing pairs, vectors, or records.
The write procedure is intended for producing machine-readable output and display for producing
human-readable output.
(newline) procedure
(newline port)
Writes an end of line to textual output port.
(write-char char) procedure
(write-char char port)
Writes the character char (not an external representation of the character) to the given textual output
port.
(write-string str) procedure
(write-string str port)
(write-string str port start)
(write-string str port start end)
Writes the characters of string str from index start to end (exclusive) in left-to-right order to the textual
output port. The default of start is 0, the default of end is the length of str.
(write-u8 byte) procedure
(write-u8 byte)
Writes the byte to the given binary output port.
(write-bytevector bvector) procedure
(write-bytevector bvector port)
(write-bytevector bvector port start)
(write-bytevector bvector port start end)
Writes the bytes of bytevector bvector from start to end (exclusive) in left-to-right order to the binary
output port. The default of start is 0, the default of end is the length of bvector.
(flush-output-port) procedure
(flush-output-port port)
Flushes any buffered output from the buffer of the given output port to the underlying file or device.
(eof-object) procedure
Returns an end-of-file object.

LispKit Port 153

31 LispKit Queue

Library (lispkit queue) provides an implementation for mutable queues, i.e. mutable FIFO buffers.
(make-queue) procedure
Returns a new empty queue.
(queue x …) procedure
Returns a new queue with x on its first position followed by the remaining parameters.

(dequeue! (queue 1 2 3)) ⇒ 1

(queue? obj) procedure
Returns #t if obj is a queue; otherwise #f is returned.
(queue-empty? q) procedure
Returns #t if queue q is empty.
(queue-size q) procedure
Returns the size of queue q, i.e. the number of elements buffered in q.
(queue=? q1 q2) procedure
Returns #t if queue q1 has the exact same elements in the same order like queue q2; otherwise, #f is
returned.
(enqueue! q x) procedure
Inserts element x at the end of queue q.
(queue-front q) procedure
Returns the first element in queue q. If the queue is empty, an error is raised.
(dequeue! q) procedure
Removes the first element from queue q and returns its value.

(define q (make-queue))
(enqueue! q 1)
(enqueue! q 2)
(dequeue! q) ⇒ 1
(queue-front q) ⇒ 2
(queue-size q) ⇒ 1

(queue-clear! q) procedure
Removes all elements from queue q.
(queue-copy q) procedure
Returns a copy of queue q.
(queue->list q) procedure
Returns a list consisting of all elements in queue q in the order they were inserted, i.e. starting with the
first element.

154

LispPad Library Reference 2020-12-23

(define q (make-queue))
(enqueue! q 1)
(enqueue! q 2)
(enqueue! q 3)
(queue->list q) ⇒ (1 2 3)

(list->queue l) procedure
Returns a new queue consisting of the elements of list l. The first element in l will become the front
element of the new queue that is returned.

(dequeue! (list->queue '(1 2 3))) ⇒ 1

(list->queue! s l) procedure
Inserts the elements of list l into queue q in the order they appear in the list.

(define q (list->queue '(1 2 3)))
(list->queue! q '(4 5 6))
(queue->list q) ⇒ (1 2 3 4 5 6)

LispKit Queue 155

32 LispKit Record

Library (lispkit record) implements record types for LispKit. A record provides a simple and flexible
mechanism for building structures with named components wrapped in distinct types.

32.1 Declarative API

record-type syntax is used to introduce new record types in a declarative fashion. Like other definitions,
record-type can either appear at the outermost level or locally within a body. The values of a record
type are called records and are aggregations of zero or more fields, each of which holds a single location.
A predicate, a constructor, and field accessors and mutators are defined for each record type.
(define-record-type <name> <constr> <pred> <field> …) syntax
<name> and <pred> are identifiers. The <constructor> is of the form:
(<constructor name> <field name> …)

and each <field> is either of the form:
(<field name> <accessor name>), or
(<field name> <accessor name> <modifier name>).

It is an error for the same identifier to occur more than once as a field name. It is also an error for the
same identifier to occur more than once as an accessor or mutator name.
The define-record-type construct is generative: each use creates a new record type that is distinct
from all existing types, including the predefined types and other record types - even record types of the
same name or structure.
An instance of define-record-type is equivalent to the following definitions:
• <name> is bound to a representation of the record type itself.
• <constructor name> is bound to a procedure that takes as many arguments as there are <field
name> elements in the (<constructor name> …) subexpression and returns a new record of type
<name>. Fields whose names are listed with<constructor name> have the corresponding argument
as their initial value. The initial values of all other fields are unspecified. It is an error for a field
name to appear in <constructor> but not as a <field name>.

• <pred> is bound to a predicate that returns #t when given a value returned by the procedure
bound to <constructor name> and #f for everything else.

• Each <accessor name> is bound to a procedure that takes a record of type <name> and returns
the current value of the corresponding field. It is an error to pass an accessor a value which is not
a record of the appropriate type.

• Each <modifier name> is bound to a procedure that takes a record of type <name> and a value
which becomes the new value of the corresponding field. It is an error to pass a modifier a first
argument which is not a record of the appropriate type.

For instance, the following record-type definition:

156

LispPad Library Reference 2020-12-23

(define-record-type <pare>
(kons x y)
pare?
(x kar set-kar!)
(y kdr))

defines kons to be a constructor, kar and kdr to be accessors, set-kar! to be a modifier, and pare?
to be a type predicate for instances of <pare> .

(pare? (kons 1 2)) ⇒ #t
(pare? (cons 1 2)) ⇒ #f
(kar (kons 1 2)) ⇒ 1
(kdr (kons 1 2)) ⇒ 2
(let ((k (kons 1 2)))

(set-kar! k 3) (kar k)) ⇒ 3

32.2 Procedural API

Besides the syntactical define-record-type abstraction for defining record types in a declarative fash-
ion, LispKit provides a low-level, procedural API for creating and instantiating records and record types.
Record types are represented in form of record type descriptor objects which itself are records.
(record? obj) procedure
Returns #t if obj is a record of any type; returns #f otherwise.
(record-type? obj) procedure
Returns #t if obj is a record type descriptor; returns #f otherwise.
(record-type obj) procedure
Returns the record type descriptor for objects obj which are records; returns #f for all non-record val-
ues.
(make-record-type name fields) procedure
Returns a record type descriptor which represents a new data type that is disjoint from all other types.
name is a string which is only used for debugging purposes, such as the printed representation of a record
of the new type. fields is a list of symbols naming the fields of a record of the new type. It is an error if
the list contains duplicate symbols.
(record-type-name rtd) procedure
Returns the type name (a string) associated with the type represented by the record type descriptor rtd.
The returned value is eqv? to the name argument given in the call to make-record-type that created
the type represented by rtd.
(record-type-field-names rtd) procedure
Returns a list of the symbols naming the fields in members of the type represented by the record type
descriptor rtd. The returned value is equal? to the fields argument given in the call to make-record-
type that created the type represented by rtd.
(make-record rtd) procedure
Returns an uninitialized instance of the record type for which rtd is the record type descriptor.
(record-constructor rtd fields) procedure
Returns a procedure for constructing new members of the type represented by the record type descriptor
rtd. The returned procedure accepts exactly as many arguments as there are symbols in the given fields
list; these are used, in order, as the initial values of those fields in a new record, which is returned by the

LispKit Record 157

LispPad Library Reference 2020-12-23

constructor procedure. The values of any fields not named in fields are unspecified. It is an error if fields
contain any duplicates or any symbols not in the fields list of the record type descriptor rtd.
(record-predicate rtd) procedure
Returns a procedure for testing membership in the type represented by the record type descriptor rtd. The
returned procedure accepts exactly one argument and returns #t if the argument is a member of the
indicated record type; it returns #f otherwise.
(record-field-accessor rtd field) procedure
Returns a procedure for reading the value of a particular field of a member of the type represented by
the record type descriptor rtd. The returned procedure accepts exactly one argument which must be a
record of the appropriate type; it returns the current value of the field named by the symbol field in that
record. The symbol field must be a member of the list of field names in the call to make-record-type
that created the type represented by rtd.
(record-field-mutator rtd field) procedure
Returns a procedure for writing the value of a particular field of a member of the type represented by the
record type descriptor rtd. The returned procedure accepts exactly two arguments: first, a record of the
appropriate type, and second, an arbitrary Scheme value; it modifies the field named by the symbol field
in that record to contain the given value. The returned value of the modifier procedure is unspecified. The
symbol field must be a member of the list of field names in the call to make-record-type that created
the type represented by rtd.

LispKit Record 158

33 LispKit Regexp

Library (lispkit regexp) provides an API for defining regular expressions and applying them to strings.
Supported are both matching as well as search/replace.

33.1 Regular expressions

The regular expression syntax supported by this library corresponds to the one of NSRegularExpression
of Apple’s Foundation framework. This is also the origin of the documentation of this section.

33.1.1 Meta‐characters

\a : Match a bell (\u0007)
\A : Match at the beginning of the input. Differs from ^ in that \A will not match after a new line
within the input.
\b : Outside of a [Set], match if the current position is a word boundary. Boundaries occur at the
transitions between word (\w) and non-word (\W) characters, with combining marks ignored. Inside
of a [Set], match a backspace (\u0008).
\B : Match if the current position is not a word boundary.
\cX : Match a control-X character.
\d : Match any character with the unicode general category of Nd , i.e. numbers and decimal digits.
\D : Match any character that is not a decimal digit.
\e : Match an escape (\u001B).
\E : Terminates a \Q ... \E quoted sequence.
\f : Match a form feed (\u000C).
\G : Match if the current position is at the end of the previous match.
\n : Match a line feed (\u000A).
\N{unicode character} : Match the named character.
\p{unicode property} : Match any character with the specified unicode property.
\P{unicode property} : Match any character not having the specified unicode property.
\Q : Quotes all following characters until \E .
\r : Match a carriage return (\u000D).
\s : Match a whitespace character. Whitespace is defined as [\t\n\f\r\p{Z}] .
\S : Match a non-whitespace character.
\t : Match a horizontal tabulation (\u0009).
\uhhhh : Match the character with the hex value hhhh .
\Uhhhhhhhh : Match the character with the hex value hhhhhhhh . Exactly eight hex digits must be
provided, even though the largest Unicode code point is \U0010ffff .
\w : Match a word character. Word characters are [\p{Ll}\p{Lu}\p{Lt}\p{Lo}\p{Nd}] .
\W : Match a non-word character.
\x{hhhh} : Match the character with hex value hhhh . From one to six hex digits may be supplied. \xhh
: Match the character with two digit hex value hh .
\X : Match a grapheme cluster.

159

https://developer.apple.com/documentation/foundation/nsregularexpression

LispPad Library Reference 2020-12-23

\Z : Match if the current position is at the end of input, but before the final line terminator, if one exists.
\z : Match if the current position is at the end of input. _n_ : Back Reference. Match whatever the n-th
capturing group matched. n must be a number ≥ 1 and ≤ total number of capture groups in the pattern.
\0ooo : Match an octal character. ooo is from one to three octal digits. 0377 is the largest allowed octal
character. The leading zero is required and distinguishes octal constants from back references.
[pattern] : Match any one character from the pattern.
. : Match any character.
^ : Match at the beginning of a line.
$: Match at the end of a line.
\ : Quotes the following character. Characters that must be quoted to be treated as literals are * ? + [
() { } ^ $ | \ . / .

33.2 Regular expression operators

| : Alternation. A|B matches either A or B .
* : Match 0 or more times, as many times as possible.
+ : Match 1 or more times, as many times as possible.
? : Match zero or one times, preferring one time if possible.
{n} : Match exactly n times.
{n,} : Match at least n times, as many times as possible.
{n,m} : Match between n and m times, as many times as possible, but not more than m times.
*? : Match zero or more times, as few times as possible.
+? : Match one or more times, as few times as possible.
?? : Match zero or one times, preferring zero.
{n}? : Match exactly n times.
{n,}? : Match at least n times, but no more than required for an overall pattern match.
{n,m}? : Match between n and m times, as few times as possible, but not less than n .
*+ : Match zero or more times, as many times as possible when first encountered, do not retry with fewer
even if overall match fails (possessive match). ++ : Match one or more times (possessive match).
?+ : Match zero or one times (possessive match).
{n}+ : Match exactly n times.
{n,}+ : Match at least n times (possessive match).
{n,m}+ : Match between n and m times (possessive match).
(...) : Capturing parentheses; the range of input that matched the parenthesized subexpression is
available after the match.
(?:...) : Non-capturing parentheses; groups the included pattern, but does not provide capturing of
matching text (more efficient than capturing parentheses).
(?>...) : Atomic-match parentheses; first match of the parenthesized subexpression is the only one
tried. If it does not lead to an overall pattern match, back up the search for a match to a position before
the "(?>" .
(?# ...) : Free-format comment (?# comment).
(?= ...) : Look-ahead assertion. True, if the parenthesized pattern matches at the current input
position, but does not advance the input position.
(?! ...) : Negative look-ahead assertion. True, if the parenthesized pattern does not match at the
current input position. Does not advance the input position.
(?<= ...) : Look-behind assertion. True, if the parenthesized pattern matches text preceding the
current input position, with the last character of the match being the input character just before the
current position. Does not alter the input position. The length of possible strings matched by the look-
behind pattern must not be unbounded (no * or + operators). (?<! ...) : Negative look-behind
assertion. True, if the parenthesized pattern does not match text preceding the current input position,

LispKit Regexp 160

LispPad Library Reference 2020-12-23

with the last character of the match being the input character just before the current position. Does not
alter the input position. The length of possible strings matched by the look-behind pattern must not be
unbounded (no * or + operators).
(?ismwx-ismwx: ...) : Flag settings. Evaluate the parenthesized expression with the specified flags
enabled or disabled.
(?ismwx-ismwx) : Flag settings. Change the flag settings. Changes apply to the portion of the pattern
following the setting. For example, (?i) changes to a case insensitive match.

33.2.1 Template Matching

$n : The text of capture group n will be substituted for $n . n must be ≥ 0 and not greater than the
number of capture groups. A $ not followed by a digit has no special meaning, and will appear in the
substitution text as itself, i.e. $.
\ : Treat the following character as a literal, suppressing any special meaning. Backslash escaping in
substitution text is only required for $ and \ , but may be used on any other character.

33.2.2 Flag options

The following flags control various aspects of regular expressionmatching. These flags get specified within
the pattern using the (?ismx-ismx) pattern options.
i : If set, matching will take place in a case-insensitive manner.
x : If set, allow use of white space and #comments within patterns.
s : If set, a “.” in a pattern will match a line terminator in the input text. By default, it will not. Note
that a carriage-return/line-feed pair in text behave as a single line terminator, and will match a single “.”
in a regular expression pattern.
m : Control the behavior of ^ and $ in a pattern. By default these will only match at the start and end,
respectively, of the input text. If this flag is set, ^ and $ will also match at the start and end of each line
within the input text.
w : Controls the behavior of \b in a pattern. If set, word boundaries are found according to the definitions
of word found in Unicode UAX 29, Text Boundaries. By default, word boundaries are identified by means
of a simple classification of characters as either word or non-word, which approximates traditional regular
expression behavior.

33.3 API

(regexp? obj) procedure
Returns #t if obj is a regular expression object; otherwise #f is returned.
(regexp str) procedure
(regexp str opt …)
Returns a new regular expression object from the given regular expression pattern str and matching op-
tions opt, … . str is a string, matching options opt are symbols. The following matching options are
supported:
• case-insensitive : Match letters in the regular expression independent of their case.
• allow-comments : Ignore whitespace and # -prefixed comments in the regular expression pattern.
• ignore-meta : Treat the entire regular expression pattern as a literal string.
• dot-matches-line-separator : Allow . to match any character, including line separators.
• anchors-match-lines : Allow ^ and $ to match the start and end of lines.

LispKit Regexp 161

LispPad Library Reference 2020-12-23

• unix-only-line-separators : Treat only \n as a line separator; otherwise, all standard line
separators are used.

• unicode-words : Use Unicode TR#29 to specify word boundaries; otherwise, all traditional regular
expression word boundaries are used.

(regexp-pattern regexp) procedure
Returns the regular expression pattern for the given regular expression object regexp. A regular expression
pattern is a string matching the regular expression syntax supported by library (lispkit regexp) .
(regexp-capture-groups regexp) procedure
Returns the number of capture groups of the given regular expression object regexp.
(escape-regexp-pattern str) procedure
Returns a regular expression pattern string by adding backslash escapes to pattern str as necessary to
protect any characters that would match as pattern meta-characters.

(escape-regexp-pattern "(home/objecthub)")
⇒ "\\(home\\/objecthub\\)"

(escape-regexp-template str) procedure
Returns a regular expression pattern template string by adding backslash escapes to pattern template str
as necessary to protect any characters that would match as pattern meta-characters.
(regexp-matches regexp str) procedure
(regexp-matches regexp str start)
(regexp-matches regexp str start end)
Returns a matching spec if the regular expression object regexp successfully matches the entire string str
from position start (inclusive) to end (exclusive); otherwise, #f is returned. The default for start is 0;
the default for end is the length of the string.
A matching spec returned by regexp-matches consists of pairs of fixnum positions (startpos . endpos) in
str. The first pair is always representing the full match (i.e. startpos is 0 and endpos is the length of str),
all other pairs represent the positions of the matching capture groups of regexp.

(define email
(regexp "[A-Z0-9a-z._%+-]+@[A-Za-z0-9.-]+\\.[A-Za-z]{2,4}"))

(regexp-matches email "matthias@objecthub.net")
⇒ ((0 . 22))
(define series

(regexp "Season\\s+(\\d+)\\s+Episode\\s+(\\d+)"))
(regexp-matches series "Season 3 Episode 12")
⇒ ((0 . 20) (7 . 8) (18 . 20))

(regexp-matches? regexp str) procedure
(regexp-matches? regexp str start)
(regexp-matches? regexp str start end)
Returns #t if the regular expression object regexp successfully matches the entire string str from position
start (inclusive) to end (exclusive); otherwise, #f is returned. The default for start is 0; the default for
end is the length of the string.
(regexp-search regexp str) procedure
(regexp-search regexp str start)
(regexp-search regexp str start end)
Returns amatching spec for the first match of the regular expression regexpwith a part of string str between
position start (inclusive) and end (exclusive). If regexp does not match any part of str between start and
end, #f is returned. The default for start is 0; the default for end is the length of the string.

LispKit Regexp 162

LispPad Library Reference 2020-12-23

A matching spec returned by regexp-search consists of pairs of fixnum positions (startpos . endpos)
in str. The first pair is always representing the full match of the pattern, all other pairs represent the
positions of the matching capture groups of regexp.

(define email
(regexp "[A-Z0-9a-z._%+-]+@[A-Za-z0-9.-]+\\.[A-Za-z]{2,4}"))

(regexp-search email "Contact matthias@objecthub.net or foo@bar.org")
⇒ ((8 . 30))
(define series

(regexp "Season\\s+(\\d+)\\s+Episode\\s+(\\d+)"))
(regexp-search series "New Season 3 Episode 12: Pilot")
⇒ ((4 . 23) (11 . 12) (21 . 23))

(regexp-search-all regexp str) procedure
(regexp-search-all regexp str start)
(regexp-search-all regexp str start end)
Returns a list of all matching specs for matches of the regular expression regexp with parts of string str
between position start (inclusive) and end (exclusive). If regexp does not match any part of str between
start and end, the empty list is returned. The default for start is 0; the default for end is the length of the
string.
A matching spec returned by regexp-search consists of pairs of fixnum positions (startpos . endpos)
in str. The first pair is always representing the full match of the pattern, all other pairs represent the
positions of the matching capture groups of regexp.

(define email
(regexp "[A-Z0-9a-z._%+-]+@[A-Za-z0-9.-]+\\.[A-Za-z]{2,4}"))

(regexp-search-all email "Contact matthias@objecthub.net or foo@bar.org")
⇒ (((8 . 30)) ((34 . 45)))
(define series

(regexp "Season\\s+(\\d+)\\s+Episode\\s+(\\d+)"))
(regexp-search-all series "New Season 3 Episode 12: Pilot")
⇒ (((4 . 23) (11 . 12) (21 . 23)))

(regexp-extract regexp str) procedure
(regexp-extract regexp str start)
(regexp-extract regexp str start end)
Returns a list of substrings from str which all represent full matches of the regular expression regexp with
parts of string str between position start (inclusive) and end (exclusive). If regexp does not match any part
of str between start and end, the empty list is returned. The default for start is 0; the default for end is the
length of the string.

(define email
(regexp "[A-Z0-9a-z._%+-]+@[A-Za-z0-9.-]+\\.[A-Za-z]{2,4}"))

(regexp-extract email "Contact matthias@objecthub.net or foo@bar.org" 10)
⇒ ("tthias@objecthub.net" "foo@bar.org")
(define series

(regexp "Season\\s+(\\d+)\\s+Episode\\s+(\\d+)"))
(regexp-extract series "New Season 3 Episode 12: Pilot")
⇒ ("Season 3 Episode 12")

(regexp-split regexp str) procedure
(regexp-split regexp str start)
(regexp-split regexp str start end)

LispKit Regexp 163

LispPad Library Reference 2020-12-23

Splits string str into a list of possibly empty substrings separated by non-empty matches of regular expres-
sion regexp within position start (inclusive) and end (exclusive). If regexp does not match any part of str
between start and end, a list with str as its only element is returned. The default for start is 0; the default
for end is the length of the string.

(define email
(regexp "[A-Z0-9a-z._%+-]+@[A-Za-z0-9.-]+\\.[A-Za-z]{2,4}"))

(regexp-split email "Contact matthias@objecthub.net or foo@bar.org" 10)
⇒ ("Contact ma" " or " "")
(define series

(regexp "Season\\s+(\\d+)\\s+Episode\\s+(\\d+)"))
(regexp-split series "New Season 3 Episode 12: Pilot")
⇒ ("New " ": Pilot")

(regexp-partition regexp str) procedure
(regexp-partition regexp str start)
(regexp-partition regexp str start end)
Partitions string str into a list of non-empty strings matching regular expression regexp within position
start (inclusive) and end (exclusive), interspersed with the unmatched portions of the whole string. The
first and every odd element is an unmatched substring, which will be the empty string if regexp matches
at the beginning of the string or end of the previous match. The second and every even element will be a
substring fully matching regexp. If str is the empty string or if there is no match at all, the result is a list
with str as its only element.

(define email
(regexp "[A-Z0-9a-z._%+-]+@[A-Za-z0-9.-]+\\.[A-Za-z]{2,4}"))

(regexp-partition email "Contact matthias@objecthub.net or foo@bar.org" 10)
⇒ ("Contact ma" "tthias@objecthub.net" " or " "foo@bar.org" "")
(define series

(regexp "Season\\s+(\\d+)\\s+Episode\\s+(\\d+)"))
(regexp-partition series "New Season 3 Episode 12: Pilot")
⇒ ("New " "Season 3 Episode 12" ": Pilot")

(regexp-replace regexp str subst) procedure
(regexp-replace regexp str subst start)
(regexp-replace regexp str subst start end)
Returns a new string replacing all matches of regular expression regexp in string str within position start
(inclusive) and end (exclusive) with string subst. regexp-replace will always return a new string, even
if there are no matches and replacements.
The optional parameters start and end restrict both the matching and the substitution, to the given posi-
tions, such that the result is equivalent to omitting these parameters and replacing on (substring str
start end) .

(define email
(regexp "[A-Z0-9a-z._%+-]+@[A-Za-z0-9.-]+\\.[A-Za-z]{2,4}"))

(regexp-replace email "Contact matthias@objecthub.net or foo@bar.org" "<omitted>" 10)
⇒ "Contact ma<omitted> or <omitted>"
(define series

(regexp "Season\\s+(\\d+)\\s+Episode\\s+(\\d+)"))
(regexp-replace series "New Season 3 Episode 12: Pilot" "Series")
⇒ "New Series: Pilot"

(regexp-replace! x) procedure
Mutates string str by replacing all matches of regular expression regexp within position start (inclusive)

LispKit Regexp 164

LispPad Library Reference 2020-12-23

and end (exclusive) with string subst. The optional parameters start and end restrict both the matching
and the substitution. regexp-replace! returns the number of replacements that were applied.

(define email
(regexp "[A-Z0-9a-z._%+-]+@[A-Za-z0-9.-]+\\.[A-Za-z]{2,4}"))

(define str "Contact matthias@objecthub.net or foo@bar.org")
(regexp-replace! email str "<omitted>" 10) ⇒ 2
str ⇒ "Contact ma<omitted> or <omitted>"

(regexp-fold regexp kons knil str) procedure
(regexp-fold regexp kons knil str finish)
(regexp-fold regexp kons knil str finish start)
(regexp-fold regexp kons knil str finish start end)
regexp-fold is the most fundamental and generic regular expression matching iterator. It repeatedly
searches string str for the regular expression regexp so long as a match can be found. On each successful
match, it applies (kons i regexp-match str acc) where i is the index since the last match (beginning with
start), regexp-match is the resulting matching spec, and acc is the result of the previous kons application,
beginning with knil. When no more matches can be found, regexp-fold calls finish with the same
arguments, except that regexp-match is #f . By default, finish just returns acc.

(regexp-fold (regexp "(\\w+)")
(lambda (i m str acc)
(let ((s (substring str (caar m) (cdar m))))
(if (zero? i) s (string-append acc "-" s))))

""
"to be or not to be")

⇒ "to-be-or-not-to-be"

LispKit Regexp 165

34 LispKit Set

Library (lispkit set) provides a generic implementation for sets of objects. Its API design is compatible
to the R6RS-style API of library (lispkit hashtable) .
A set is a data structure for representing collections of objects. Any object can be used as element, provided
a hash function and a suitable equivalence function is available. A hash function is a procedure that maps
elements to exact integer objects. It is the programmer’s responsibility to ensure that the hash function is
compatible with the equivalence function, which is a procedure that accepts two objects and returns true
if they are equivalent and #f otherwise. Standard sets for arbitrary objects based on the eq? , eqv? ,
and equal? predicates are provided.

34.1 Constructors

(make-eq-set) procedure
Create a new empty set using eq? as equivalence function.
(make-eqv-set) procedure
Create a new empty set using eqv? as equivalence function.
(make-equal-set) procedure
Create a new empty set using equal? as equivalence function.
(make-set hash equiv) procedure
(make-set hash equiv k)
Create a new empty set using the given hash function hash and equivalence function equiv. An initial
capacity k can be provided optionally.
(eq-set element …) procedure
Create a new set using eq? as equivalence function. Initialize it with the values element … .
(eqv-set element …) procedure
Create a new set using eqv? as equivalence function. Initialize it with the values element … .
(equal-set element …) procedure
Create a new set using equal? as equivalence function. Initialize it with the values element … .

34.2 Inspection

(set-equivalence-function s) procedure
Returns the equivalence function used by set s.
(set-hash-function s) procedure
Returns the hash function used by set s.
(set-mutable? s) procedure
Returns #t if set s is mutable.

166

LispPad Library Reference 2020-12-23

34.3 Predicates

(set? obj) procedure
Returns #t if obj is a set.
(set-empty? obj) procedure
Returns #t if obj is an empty set.
(set=? s1 s2) procedure
Returns #t if set s1 and set s2 are using the same equivalence function and contain the same elements.
(disjoint? s1 s2) procedure
Returns #t if set s1 and set s2 are disjoint sets.
(subset? s1 s2) procedure
Returns #t if set s1 is a subset of set s2.
(proper-subset? s1 s2) procedure
Returns #t if set s1 is a proper subset of set s2, i.e. s1 is a subset of s2 and s1 is not equivalent to s2.
(set-contains? s element) procedure
Returns # if set s contains element.
(set-any? s proc) procedure
Returns true if there is at least one element in set s for which procedure proc returns true (i.e. not #f).
(set-every? s proc) procedure
Returns true if procedure proc returns true (i.e. not #f) for all elements of set s.

34.4 Procedures

(set-size s) procedure
Returns the number of elements in set s.
(set-elements s) procedure
Returns the elements of set s as a vector.
(set-copy s) procedure
(set-copy s mutable)
Copies set s creating an immutable copy if mutable is set to #f or if mutable is not provided.
(set-for-each s proc) procedure
Applies procedure proc to all elements of set s in an undefined order.
(set-filter s pred) procedure
Creates a new set containing the elements of set s for which the procedure pred returns true.
(set-union s s1 …) procedure
Creates a new set containing the union of s with s1 ….
(set-intersection s s1 …) procedure
Creates a new set containing the intersection of s with s1 ….
(set-difference s s1 …) procedure
Creates a new set containing the difference of s and the sets in s1 … .
(set->list s) procedure
Returns the elements of set s as a list.

LispKit Set 167

LispPad Library Reference 2020-12-23

(list->eq-set elements) procedure
Creates a new set using the equivalence function eq? from the values in list elements.
(list->eqv-set elements) procedure
Creates a new set using the equivalence function eqv? from the values in list elements.
(list->equal-set elements) procedure
Creates a new set using the equivalence function equal? from the values in list elements.

34.5 Mutators

(set-adjoin! s element …) procedure
Adds element … to the set s.
(set-delete! s element …) procedure
Deletes element … from the set s.
(set-clear! s) procedure
(set-clear! s k)
Clears set s and reserves a capacity of k elements if k is provided.
(list->set! s elements) procedure
Adds the values of list elements to set s.
(set-filter! s pred) procedure
Removes all elements from set s for which procedure pred returns #f .
(set-union! s s1 …) procedure
Stores the union of set s and sets s1 … in s.
(set-intersection! s s1 …) procedure
Stores the intersection of set s and the sets s1 … in s.
(set-difference! s s1 …) procedure
Stores the difference of set s and the sets s1 … in s.

LispKit Set 168

35 LispKit SQLite

SQLite is a lightweight, embedded, relational open-source database management system. It is simple to
use, requires zero configuration, is not based on a server, and manages databases directly in files.
Library (lispkit sqlite) provides functionality for creating, managing, and querying SQLite databases
in LispKit. (lispkit sqlite) is a low-level library that wraps the classial C API for SQLite3. Just like
in the C API, the actual SQL statements are represented as strings and compiled into statement objects
that are used for executing the statements.

35.1 Introduction

Library (lispkit sqlite) exports procedure open-database for creating new databases and con-
necting to existing ones. The following code will create a new database from scratch in file ~/Desk-
top/TestDatabase.sqlite if that file does not exist. If the file exists, open-database will return a
database object for accessing the database:

(import (lispkit sqlite))
(define db (open-database "~/Desktop/TestDatabase.sqlite"))

A new table can be created in database db with the help of an SQL CREATE TABLE statement. SQL
statements are defined as strings and compiled into statement objects via procedure prepare-statement
. Procedure process-statement is used to execute statement objects.

(define stmt0
(prepare-statement db

(string-append
"CREATE TABLE Contacts (id INTEGER PRIMARY KEY,"
" name TEXT NOT NULL,"
" email TEXT NOT NULL UNIQUE,"
" phone TEXT);")))

(process-statement stmt0)

Entries can be inserted into the new table Contacts with a corresponding SQL statement as shown in the
following listing. First, a new SQL statement is being compiled. This SQL statement contains parameters.
These are placeholders that are defined via ? . They can be bound to concrete values before the statement
is executed using procedures bind-parameter and bind-parameters .
The SQL statement below has 4 parameters, indexed starting 1. The code below binds these parameters
one by one via bind-parameter to concrete values before the statement is executed via process-
statement .

(define stmt1 (prepare-statement db "INSERT INTO Contacts VALUES (?, ?, ?, ?);"))
(bind-parameter stmt1 1 1000)
(bind-parameter stmt1 2 "Mickey Mouse")
(bind-parameter stmt1 3 "mickey@disney.net")
(bind-parameter stmt1 4 "+1 101-123-456")
(process-statement stmt1)

169

LispPad Library Reference 2020-12-23

SQL statements can be reused many times. Typically, this is done by utilizing procedure reset-
statement . If the previous execution was successful, though, this is not strictly necessary and a reset
is done automatically. The code below re-applies the same statement a second time, this time using
procedure bind-parameters to bind all parameters in one go.

(reset-statement stmt1) ; not strictly needed here
(bind-parameters stmt1 '(1001 "Donald Duck" "donald@disney.net" "+1 101-123-456"))
(process-statement stmt1)

The following code shows how to query for the total number of distinct phone numbers in table Contacts
. The first invokation of procedure process-statement returns #f , indicating that there is a result.
column-count returns 1, which is the column containing the distinct count. The count is extracted from
the statement via column-value . The second invokation of process-statement now returns #t as
there are no further query results.

; Count the number of distinct phone numbers.
(define stmt2 (prepare-statement db "SELECT COUNT(DISTINCT phone) FROM Contacts;"))
(process-statement stmt2) ; returns `#f`, i.e. there is a result
(display (column-count stmt2))
(newline)
(display (column-value stmt2 0))
(newline)
(process-statement stmt2) ; returns `#t`, i.e. there is no further result

The final example code below shows how to iterate effectively over a result table that has more than one
result row.

; Show all names and email addresses from the `Contacts` table.
(define stmt3 (prepare-statement db "SELECT name, email FROM Contacts;"))
(do ((res '() (cons (row-values stmt3) res)))

((process-statement stmt3) res))

Executing this code returns the following list:

(("Donald Duck" "donald@disney.net") ("Mickey Mouse" "mickey@disney.net"))

35.2 API

35.2.1 SQLite version retrieval

(sqlite-version) procedure
The sqlite-version procedure returns a string that specifies the version of the SQLite framework in
use in the format “X.Y.Z”, where X is the major version number (e.g. 3 for SQLite3), Y is the minor version
number, and Z is a release number.
(sqlite-version-number) procedure
The sqlite-version-number procedure returns a fixnum with the value X1000000 + Y1000 + Z where
X is the major version number (e.g. 3 for SQLite3), Y is the minor version number, and Z is a release
number.

LispKit SQLite 170

LispPad Library Reference 2020-12-23

35.2.2 Database options

The following fixnum constants are used to specify how databases are opened or created via make-
database and open-database . They can be combined by using an inclusive or function such as fxior .
For instance, (fxior sqlite-readwrite sqlite-create) combines the two options sqlite-create
and sqlite-readwrite .
sqlite-readonly constant
This is a fixnum value for specifying an option how databases are opened or created via make-database
and open-database . With this option, the database is opened in read-only mode. If the database does
not exist already, an exception is thrown.
sqlite-readwrite constant
This is a fixnum value for specifying an option how databases are opened or created via make-database
and open-database . With this option, the database is opened for reading and writing if possible, or
reading only if the file cannot be written at the operating system-level. If the database does not exist
already, an exception is thrown.
sqlite-create constant
This is a fixnum value for specifying an option how databases are opened or created via make-database
and open-database . This option needs to be combined with either sqlite-readwrite or sqlite-
readonly . It will lead to the creation of a new database in case there is no database at the specified
path.
sqlite-default constant
This is a fixnum value for specifying an option how databases are opened or created via make-database
and open-database . With this option, the database is opened for reading and writing if possible, or
reading only if the file cannot be written at the operating system-level. If the database does not exist
already, a new database is being created.
sqlite-fullmutex constant
This is a fixnum value for specifying an option how databases are opened or created via make-database
and open-database . With this option, the database will use the “serialized” threading mode. In this
mode, multiple threads can safely attempt to use the same database connection at the same time without
the need for synchronization.
sqlite-sharedcache constant
This is a fixnum value for specifying an option how databases are opened or created via make-database
and open-database . With this option, the database is opened with shared cache enabled.
sqlite-privatecache constant
This is a fixnum value for specifying an option how databases are opened or created via make-database
and open-database . With this option, the database is opened with shared cache disabled.

35.2.3 Database objects

SQLite database objects are either created in memory with procedure make-database or they are created
on disk by calling procedure open-database . open-database can also be used for opening an existing
database. SQLite stores databases in regular files on disk.
(make-database) procedure
(make-database options)
Creates a new temporary in-memory database whose characteristics are described by options. options is
a fixnum value. If no options are specified, sqlite-default (= create a new read/write database in
memory) is used as the default. Options are represented as fixnum values. Combinations of options are

LispKit SQLite 171

LispPad Library Reference 2020-12-23

created by performing a bitwise inclusive or of several option values, e.g. via (fxior opt1 opt2) . The
following option values are predefined and can be used with make-database :
• sqlite-default : A new in-memory database is created and opened for reading and writing.
• sqlite-fullmutex : The database will use the “serialized” threading mode. In this mode, multiple
threads can safely attempt to use the same database connection at the same time without the need
for synchronization.

• sqlite-sharedcache : The database is opened with shared cache enabled.
• sqlite-privatecache : The database is opened with shared cache disabled.

(open-database path) procedure
(open-database path options)
Opens a database at file path path whose characteristics are described by options. options is a fixnum
value. If no options are specified, sqlite-default (= create a new read/write database if there is
not database at path) is used as the default. Options are represented as fixnum values. Combinations of
options are created by performing a bitwise inclusive or of several option values, e.g. via (fxior opt1
opt2) . The following option values are predefined and can be used with open-database :
• sqlite-readonly : The database is opened in read-only mode. If the database does not exist
already, an exception is thrown.

• sqlite-readwrite : The database is opened for reading and writing if possible, or reading only if
the file cannot be written at the operating system-level. If the database does not exist already, an
exception is thrown.

• sqlite-create : This option needs to be combined with either sqlite-readwrite or sqlite-
readonly . It will lead to the creation of a new database in case there is no database at the specified
path.

• sqlite-default : The database is opened for reading and writing if possible, or reading only if the
file cannot be written at the operating system-level. If the database does not exist already, a new
database is being created.

• sqlite-fullmutex : The database will use the “serialized” threading mode. In this mode, multiple
threads can safely attempt to use the same database connection at the same time without the need
for synchronization.

• sqlite-sharedcache : The database is opened with shared cache enabled.
• sqlite-privatecache : The database is opened with shared cache disabled.

(close-database db) procedure
Closes database db and deallocates all memory related to the database. If a transaction is open at this
point, the transaction is automatically rolled back.
(database-path db) procedure
Returns the file path as a string at which the database db is being persisted. For in-memory databases,
this procedure returns #f .
(database-last-row-id db) procedure
Each entry in a database table (except for WITHOUT ROWID tables) has a unique fixnum key called the
row id. Procedure database-last-row-id returns the row id of the most recent successful insert into a
table of database db. Inserts into WITHOUT ROWID tables are not recorded. If no successful inserts into
row id tables have ever occurred for an open database, then database-last-row-id returns zero.
(database-last-changes db) procedure
database-last-changes returns the number of rows modified, inserted or deleted by the most recently
completed INSERT , UPDATE or DELETE statement on the database db. Executing any other type of SQL
statement does not modify the value returned by database-last-changes .
(database-total-changes db) procedure
Procedure database-total-changes returns the total number of rows inserted, modified or deleted by

LispKit SQLite 172

LispPad Library Reference 2020-12-23

all INSERT , UPDATE , or DELETE statements completed since the database db was opened. Executing
any other type of SQL statement does not affect the value returned by database-total-changes .

35.2.4 SQL statements

SQL statements are created with procedure prepare-statement . This procedure returns a statement
object which encapsulates a compiled SQL query. The compiled SQL query can be executed by repeatedly
calling procedure process-statement . As long as process-statement returns #f , a new result
row can be extracted from the statement object with procedures such as column-count , column-name
, column-type , column-value , row-names , row-types , row-values , and row-alist . As soon
as process-statement returns #t , processing is complete. With procedure reset-statement , a
statement object can be reset such that it can be executed again.
(prepare-statement db str) procedure
To execute an SQL statement, it must first be compiled into bytecode which then gets executed, potentially
multiple times, in a second step. prepare-statement compiles an SQL statement contained in string
str for execution in database db. It returns a statement object which encapsulates the compiled query. If
compilation fails, an execption is thrown.
(parameter-count stmt) procedure
Returns the number of parameters contained in statement object stmt. If stmt contains N parameters, they
can be referenced by the indices 1 to N.
(parameter-index stmt name) procedure
Returns the index of named parameter name in statement object stmt. name is a string. The result is a
positive fixnum if the named parameter exists, or #f if there is no parameter with name name.
(parameter-name stmt idx) procedure
Returns the name of the named parameter at index idx in statement object stmt as a string. If such a
parameter does not exist, parameter-name returns #f . idx is a positive fixnum.
(bind-parameter stmt idx val) procedure
Binds parameter at index idx to value val in statement object stmt.
(bind-parameters stmt vals) procedure
(bind-parameters stmt vals idx)
Binds the parameters starting at index idx to values in list vals. If idx is not given, 1 is used as a default.
bind-parameters returns the tail of the list that could not be bound to parameters. idx is a positive
fixnum.
(process-statement stmt) procedure
Procedure process-statement starts or proceeds executing statement stmt. The result of the execution
step is accessible via the statement object stmt and can be inspected by procedures such as column-count
, column-name , column-type , column-value , row-names , row-types , row-values , and row-
alist . process-statement returns #f as long as the execution is ongoing and a new resulting table
row is available for inspection. When #t is returned, execution is complete.
(reset-statement stmt) procedure
Resets the statement object stmt so that it can be processed another time.
(column-count stmt) procedure
column-count returns the number of columns of the result of processing statement stmt. If stmt does
not yield data as a result, column-count returns 0.
(column-name stmt idx) procedure
column-name returns the name of column idx of the result of executing statement stmt. idx is a fixnum
identifying the column by its 0-based index. column-name returns #f if column idx does not exist.

LispKit SQLite 173

LispPad Library Reference 2020-12-23

(column-type stmt idx) procedure
column-type returns the type of the value at column idx of the result of executing statement stmt. idx is
a fixnum identifying the column by its 0-based index. column-type returns #f if column idx does not
exist. Types are represented by symbols. The following types are supported:
• sqlite-integer : Values are fixnums
• sqlite-float : Values are flonums
• sqlite-text : Values are strings
• sqlite-blob : Values are bytevectors
• sqlite-null : There is no value (void is the only supported value)

(column-value stmt idx) procedure
column-value returns the value at column idx of the result of executing statement stmt. idx is a fixnum
identifying the column by its 0-based index. column-value returns #f if column idx does not exist.
(row-names stmt) procedure
Returns a list of all column names of the result of executing statement stmt.
(row-types stmt) procedure
Returns a list of all column types of the result of executing statement stmt. Types are represented by
symbols. The following types are supported:
• sqlite-integer : Values are fixnums
• sqlite-float : Values are flonums
• sqlite-text : Values are strings
• sqlite-blob : Values are bytevectors
• sqlite-null : There is no value (void is the only supported value)

(row-values stmt) procedure
Returns a list of all column values of the result of executing statement stmt.
(row-alist stmt) procedure
Returns an association list associating column names with column values of the result of executing state-
ment stmt.

LispKit SQLite 174

36 LispKit Stack

Library (lispkit stack) provides an implementation for mutable stacks, i.e. mutable LIFO buffers.
(make-stack) procedure
Returns a new empty stack.
(stack x …) procedure
Returns a new stack with x on its top position followed by the remaining parameters.

(stack-top (stack 1 2 3)) ⇒ 1

(stack? obj) procedure
Returns #t if obj is a stack; otherwise #f is returned.
(stack-empty? s) procedure
Returns #t if stack s is empty.
(stack-size s) procedure
Returns the size of stack s, i.e. the number of elements buffered in s.
(stack=? s1 s2) procedure
Returns #t if stack s1 has the exact same elements in the same order like stack s2; otherwise, #f is
returned.
(stack-push! s x) procedure
Pushes element x onto stack s.
(stack-top s) procedure
Returns the top element of stack s. If the stack is empty, an error is raised.
(stack-pop! s) procedure
Removes the top element from stack s and returns its value.

(define s (make-stack))
(stack-push! s 1)
(stack-push! s 2)
(stack-pop! s) ⇒ 2
(stack-size s) ⇒ 1

(stack-clear! s) procedure
Removes all elements from stack s.
(stack-copy s) procedure
Returns a copy of stack s.
(stack->list s) procedure
Returns a list consisting of all elements on stack s in the order they appear, i.e. starting with the top
element.

175

LispPad Library Reference 2020-12-23

(stack->list (stack 1 2 3))

(list->stack l) procedure
Returns a new stack consisting of the elements of list l. The first element in l will become the top element
of the stack that is returned.
(list->stack! s l) procedure
Pushes the elements of list l onto stack s in reverse order.

(define s (list->stack '(3 2 1)))
(list->stack! s '(6 5 4))
(stack->list s) ⇒ (6 5 4 3 2 1)

LispKit Stack 176

37 LispKit Stream

Streams are a sequential data structure containing elements computed only on demand. They are some-
times also called lazy lists.
Streams get constructed with list-like constructors. A stream is either null or is a pair with a stream in
its cdr. Since elements of a stream are computed only when accessed, streams can be infinite. Once
computed, the value of a stream element is cached in case it is needed again.

37.1 Benefits of using streams

When used effectively, the primary benefit of streams is improved modularity. Consider a process that
takes a sequence of items, operating on each in turn. If the operation is complex, it may be useful to split
it into two or more procedures in which the partially-processed sequence is an intermediate result. If that
sequence is stored as a list, the entire intermediate result must reside in memory all at once; however, if
the intermediate result is stored as a stream, it can be generated piecemeal, using only as much memory
as required by a single item. This leads to a programming style that uses many small operators, each
operating on the sequence of items as a whole, similar to a pipeline of unix commands.
In addition to improvedmodularity, streams permit a clear exposition of backtracking algorithms using the
“stream of successes” technique, and they can be used to model generators and co-routines. The implicit
memoization of streams makes them useful for building persistent data structures, and the laziness of
streams permits some multi-pass algorithms to be executed in a single pass. Savvy programmers use
streams to enhance their programs in countless ways.
There is an obvious space/time trade-off between lists and streams; lists take more space, but streams take
more time (to see why, look at all the type conversions in the implementation of the stream primitives).
Streams are appropriate when the sequence is truly infinite, when the space savings are needed, or when
they offer a clearer exposition of the algorithms that operate on the sequence.

37.2 Stream abstractions

The (lispkit stream) library provides two mutually-recursive abstract data types: An object of type
stream is a promise that, when forced, is either stream-null or is an object of type stream-pair . An
object of the stream-pair type contains a stream-car and a stream-cdr , which must be a stream.
The essential feature of streams is the systematic suspensions of the recursive promises between the two
data types.
The object stored in the stream-car of a stream-pair is a promise that is forced the first time the
stream-car is accessed; its value is cached in case it is needed again. The object may have any type,
and different stream elements may have different types. If the stream-car is never accessed, the object
stored there is never evaluated. Likewise, the stream-cdr is a promise to return a stream, and is only
forced on demand.

177

LispPad Library Reference 2020-12-23

37.3 Stream API

The design of the API of library (lispkit stream) is based on Philip Bewig’s SRFI 41. The implemen-
tation of the library is LispKit-specific.
stream-null object
stream-null is a stream that, when forced, is a single object, distinguishable from all other objects, that
represents the null stream. stream-null is immutable and unique.
(stream? obj) procedure
Returns #t if obj is a stream; otherwise #f is returned.
(stream-null? obj) procedure
stream-null? is a procedure that takes an object obj and returns #t if the object is the distinguished
null stream and #f otherwise. If object obj is a stream, stream-null? must force its promise in order
to distinguish stream-null from stream-pair .
(stream-pair? obj) procedure
stream-pair? is a procedure that takes an object and returns #t if the object is a stream-pair
constructed by stream-cons and #f otherwise. If object is a stream, stream-pair? must force its
promise in order to distinguish stream-null from stream-pair .
(stream-cons obj strm) syntax
stream-cons is a special form that accepts an object obj and a stream strm and creates a newly-allocated
stream containing a stream that, when forced, is a stream-pair with the object in its stream-car
and the stream in its stream-cdr . stream-cons must be syntactic, not procedural, because neither
object obj nor stream is evaluated when stream-cons is called. Since strm is not evaluated, when the
stream-pair is created, it is not an error to call stream-cons with a stream that is not of type stream;
however, doing so will cause an error later when the stream-cdr of the stream-pair is accessed. Once
created, a stream-pair is immutable.

(define s (stream-cons 1 (stream-cons 2 (stream-cons 3 stream-null))))
(stream-car s) ⇒ 1
(stream-car (stream-cdr s)) ⇒ 2

(stream-car strm) procedure
stream-car is a procedure that takes a stream strm and returns the object stored in the stream-car
of the stream. stream-car signals an error if the object passed to it is not a stream-pair . Calling
stream-car causes the object stored there to be evaluated if it has not yet been; the object’s value is
cached in case it is needed again.
(stream-cdr strm) procedure
stream-cdr is a procedure that takes a stream strm and returns the stream stored in the stream-cdr
of the stream. stream-cdr signals an error if the object passed to it is not a stream-pair . Calling
stream-cdr does not force the promise containing the stream stored in the stream-cdr of the stream.
(stream obj …) syntax
stream is syntax that takes zero or more objects obj and creates a newly-allocated stream containing in
its elements the objects, in order. Since stream is syntactic, the objects are evaluated when they are
accessed, not when the stream is created. If no objects are given, as in (stream) , the null stream is
returned.
(stream-lambda formals expr0 expr1 …) syntax
stream-lambda creates a procedure that returns a stream to evaluate the body of the procedure. The
last body expression to be evaluated must yield a stream. As with the regular lambda , formals may be a
single variable name, in which case all the formal arguments are collected into a single list, or it is a list

LispKit Stream 178

LispPad Library Reference 2020-12-23

of variable names, which may be null if there are no arguments, proper if there are an exact number
of arguments, or dotted, if a fixed number of arguments is to be followed by zero or more arguments
collected into a list. The body expr0 expr1 … must contain at least one expression, and may contain
internal definitions preceding any expressions to be evaluated.

(define iter (stream-lambda (f x) (stream-cons x (iter f (f x)))))
(define nats (iter (lambda (x) (+ x 1)) 0))
(stream-car (stream-cdr nats)) ⇒ 1

(define stream-add
(stream-lambda (s1 s2)

(stream-cons (+ (stream-car s1) (stream-car s2))
(stream-add (stream-cdr s1) (stream-cdr s2)))))

(define evens (stream-add nats nats))

(stream-car evens) ⇒ 0
(stream-car (stream-cdr evens)) ⇒ 2
(stream-car (stream-cdr (stream-cdr evens))) ⇒ 4

(define-stream (name arg …) expr0 expr1 …) syntax
define-stream creates a procedure name that returns a stream, and may appear anywhere a normal
define may appear, including as an internal definition, and may have internal definitions of its own, in-
cluding other define-streams . The defined procedure takes arguments arg … in the same way as
stream-lambda . define-stream is syntactic sugar on stream-lambda .
(stream-let tag ((var val) …) expr1 expr2 …) syntax
stream-let creates a local scope that binds each variable var to the value of its corresponding expression
val. It additionally binds tag to a procedure which takes the bound variables as arguments and body as
its defining expressions, binding the tag with stream-lambda . tag is in scope within body, and may be
called recursively. When the expanded expression defined by the stream-let is evaluated, stream-
let evaluates the expressions expr1 expr2 … in its body in an environment containing the newly-bound
variables, returning the value of the last expression evaluated, which must yield a stream.
stream-let provides syntactic sugar on stream-lambda , in the same manner as normal let provides
syntactic sugar on normal lambda . However, unlike normal let , the tag is required, not optional,
because unnamed stream-let is meaningless.
(display-stream strm) procedure
(display-stream strm n)
(display-stream strm n sep)
(display-stream strm n sep port)
display-stream displays the first n elements of stream strm on port port using string sep as a separator
string. If n is not provided, all elements are getting displayed. If sep is not provided, ", " is used as a
default. If port is not provided, the current output port is used.
(list->stream lst) procedure
list->stream takes a list of objects lst and returns a newly-allocated stream containing in its elements
the objects in the list. Since the objects are given in a list, they are evaluated when list->stream is
called, before the stream is created. If the list of objects is null, as in (list->stream '()) , the null
stream is returned.
(port->stream) procedure
(port->stream port)
port->stream takes a port port and returns a newly-allocated stream containing in its elements the
characters on the port. If the port is not given, it defaults to the current input port. The returned stream
has finite length and is terminated by stream-null .

LispKit Stream 179

LispPad Library Reference 2020-12-23

(stream->list strm) procedure
(stream->list strm n)
stream->list takes a natural number n and a stream strm and returns a newly-allocated list containing
in its elements the first n items in the stream. If the stream has less than n items, all the items in the
stream will be included in the returned list. If n is not given, it defaults to infinity, which means that
unless the stream is finite, stream->list will never return.
(stream-append strm …) procedure
stream-append returns a newly-allocated stream containing in its elements those elements contained in
its argument streams strm …, in order of input. If any of the input streams is infinite, no elements of any
of the succeeding input streams will appear in the output stream; thus, if x is infinite, (stream-append
x y) ≡ x .
(stream-concat strms) procedure
stream-concat takes a stream strms consisting of one or more streams and returns a newly-allocated
stream containing all the elements of the input streams. If any of the streams in the input stream is infinite,
any remaining streams in the input stream will never appear in the output stream.
(stream-constant obj …) procedure
stream-constant takes one or more objects obj … and returns a newly-allocated stream containing in
its elements the objects, repeating the objects in succession forever.
(stream-drop strm n) procedure
stream-drop returns the suffix of the input stream strm that starts at the next element after the first
n elements. The output stream shares structure with the input stream; thus, promises forced in one
instance of the stream are also forced in the other instance of the stream. If the input stream has less than
n elements, stream-drop returns the null stream.
(stream-drop-while pred? strm) procedure
stream-drop-while returns the suffix of the input stream that starts at the first element x for which
(pred? x) is #f . The output stream shares structure with the input stream.
(stream-filter pred? strm) procedure
stream-filter returns a newly-allocated stream that contains only those elements x of the input stream
for which (pred? x) is non- #f .
(stream-fold proc base strm) procedure
stream-fold applies a binary procedure proc to base and the first element of stream strm to compute a
new base, then applies the procedure proc to the new base (1st argument of proc) and the next element
of stream (2nd argument of proc) to compute a succeeding base, and so on, accumulating a value that is
finally returned as the value of stream-fold when the end of the stream is reached. strmmust be finite,
or stream-fold will enter an infinite loop.
See also stream-scan , which is similar to stream-fold , but useful for infinite streams. stream-fold
is a left-fold; there is no corresponding right-fold , since right-fold relies on finite streams that are
fully-evaluated, at which time they may as well be converted to a list.
(stream-for-each proc strm …) procedure
stream-for-each applies a procedure proc elementwise to corresponding elements of the input streams
strm … for its side-effects. stream-for-each stops as soon as any of its input streams is exhausted.
(stream-from first) procedure
(stream-from first delta)
stream-from creates a newly-allocated stream that contains first as its first element and increments each
succeeding element by delta. If delta is not given it defaults to 1. first and deltamay be of any numeric type.
stream-from is frequently useful as a generator in stream-of expressions. See also stream-range
for a similar procedure that creates finite streams.

LispKit Stream 180

LispPad Library Reference 2020-12-23

(stream-iterate proc base) procedure
stream-iterate creates a newly-allocated stream containing base in its first element and applies proc
to each element in turn to determine the succeeding element.
(stream-length strm) procedure
stream-length takes an input stream strm and returns the number of elements in the stream. It does
not evaluate its elements. stream-length may only be used on finite streams as it enters an infinite
loop with infinite streams.
(stream-map proc strm …) procedure
stream-map applies a procedure proc elementwise to corresponding elements of the input streams strm
…, returning a newly-allocated stream containing elements that are the results of those procedure ap-
plications. The output stream has as many elements as the minimum-length input stream, and may be
infinite.
(stream-match strm-expr (pattern [fender] expr) …) syntax
stream-match provides the syntax of pattern-matching for streams. The input stream strm-expr is an
expression that evaluates to a stream and is matched against a number of clauses. Each clause (pattern
[fender] expr) consists of a pattern that matches a stream of a particular shape, an optional fender
that must succeed if the pattern is to match, and an expression that is evaluated if the pattern matches.
There are four types of patterns:
• () : Matches the null stream
• (pat0 pat1 ...) : Matches a finite stream with length exactly equal to the number of pattern
elements

• (pat0 pat1 patrest) : Matches an infinite stream, or a finite stream with length at least
as great as the number of pattern elements before the literal dot

• pat : Matches an entire stream. Should always appear last in the list of clauses; it’s not an error to
appear elsewhere, but subsequent clauses could never match

Each pattern element pati may be either:
• An identifier: Matches any stream element. Additionally, the value of the stream element is bound
to the variable named by the identifier, which is in scope in the fender and expression of the corre-
sponding clause. Each identifier in a single pattern must be unique.

• A literal underscore: Matches any stream element, but creates no bindings.
The patterns are tested in order, left-to-right, until a matching pattern is found. If fender is present, it
must evaluate as non- #f for the match to be successful. Pattern variables are bound in the corresponding
fender and expression. Once the matching pattern is found, the corresponding expression is evaluated and
returned as the result of the match. An error is signaled if no pattern matches the input stream.
(stream-of expr rest …) syntax
stream-of provides the syntax of stream comprehensions, which generate streams by means of looping
expressions. The result is a stream of objects of the type returned by expr. There are four types of
clauses:
• (var in stream-expr) : Loop over the elements of stream-expr , in order from the start of the
stream, binding each element of the stream in turn to var . stream-from and stream-range
are frequently useful as generators.

• (var is expr) : Bind var to the value obtained by evaluating expr .
• (pred? expr) : Include in the output stream only those elements x for which (pred? x) is non-

#f .
The scope of variables bound in the stream comprehension is the clauses to the right of the binding clause
(but not the binding clause itself) plus the result expression. When two or more generators are present,

LispKit Stream 181

LispPad Library Reference 2020-12-23

the loops are processed as if they are nested from left to right; i.e. the rightmost generator varies fastest.
A consequence of this is that only the first generator may be infinite and all subsequent generators must
be finite. If no generators are present, the result of a stream comprehension is a stream containing the
result expression; thus, (stream-of 1) produces a finite stream containing only the element 1.
(stream-range first past) procedure
(stream-range first past delta)
stream-range creates a newly-allocated stream that contains first as its first element and increments
each succeeding element by step. The stream is finite and ends before past, which is not an element of
the stream. If step is not given it defaults to 1 if first is less than past and -1 otherwise. First, past
and step may be of any numeric type. stream-range is frequently useful as a generator in stream-of
expressions.
(stream-ref strm n) procedure
stream-ref returns the n-th element of stream, counting from zero. An error is signaled if n is greater
than or equal to the length of stream.
(stream-reverse strm) procedure
stream-reverse returns a newly-allocated stream containing the elements of the input stream strm but
in reverse order. stream-reverse may only be used with finite streams; it enters an infinite loop with
infinite streams. stream-reverse does not force evaluation of the elements of the stream.
(stream-scan proc base strm) procedure
stream-scan accumulates the partial folds of an input stream strm into a newly-allocated output stream.
The output stream is the base followed by (stream-fold proc base (stream-take i stream)) for
each of the first i elements of stream.
(stream-take strm n) procedure
stream-take takes a non-negative integer n and a stream and returns a newly-allocated stream contain-
ing the first n elements of the input stream. If the input stream has less than n elements, so does the
output stream.
(stream-take-while pred? strm) procedure
stream-take-while takes a predicate pred? and a stream strm and returns a newly-allocated stream
containing those elements x that form the maximal prefix of the input stream for which (pred? x) is
non- #f .
(stream-unfold mapper pred? generator base) procedure
stream-unfold is the fundamental recursive stream constructor. It constructs a stream by repeatedly
applying generator to successive values of base, in the manner of stream-iterate , then applyingmapper
to each of the values so generated, appending each of the mapped values to the output stream as long as
(pred? base) is non- #f .
(stream-unfolds proc seed) procedure
stream-unfolds returns n newly-allocated streams containing those elements produced by successive
calls to the generator proc, which takes the current seed as its argument and returns n+1 values:
(proc seed) ⇒ seed result0 … resultn-1

where the returned seed is the input seed to the next call to the generator and resulti indicates how to
produce the next element of the i-th result stream:
• (value) : value is the next car of the result stream
• #f : no value produced by this iteration of the generator proc for the result stream
• () : the end of the result stream

It may require multiple calls of proc to produce the next element of any particular result stream.

LispKit Stream 182

LispPad Library Reference 2020-12-23

(stream-zip strm …) procedure
stream-zip takes one or more input streams strm… and returns a newly-allocated stream in which each
element is a list (not a stream) of the corresponding elements of the input streams. The output stream
is as long as the shortest input stream, if any of the input streams is finite, or is infinite if all the input
streams are infinite.

LispKit Stream 183

38 LispKit String

Strings are sequences of characters. In LispKit, characters are UTF-16 code units. Strings are written as
sequences of characters enclosed within quotation marks ("). Within a string literal, various escape
sequences represent characters other than themselves. Escape sequences always start with a backslash \
:
• \a : alarm (U+0007)
• \b : backspace (U+0008)
• \t : character tabulation (U+0009)
• \n : linefeed (U+000A)
• \r : return (U+000D)
• \" : double quote (U+0022)
• \\ : backslash (U+005C)
• \| : vertical line (U+007C)
• \ line-end: used for encoding multi-line string literals
• \x hex-scalar-value ; : specified character

The result is unspecified if any other character in a string occurs after a backslash.
Except for a line ending, any character outside of an escape sequence stands for itself in the string literal.
A line ending which is preceded by a backslash expands to nothing and can be used to encode multi-line
string literals.

(display "The word \"recursion\" has many meanings.") ⇒
The word "recursion" has many meanings.
(display "Another example:\ntwo lines of text.") ⇒
Another example:
two lines of text.
(display "\x03B1; is named GREEK SMALL LETTER ALPHA.") ⇒
α is named GREEK SMALL LETTER ALPHA.

The length of a string is the number of characters, i.e. UTF-16 code units, that it contains. This number
is an exact, non-negative integer that is fixed when the string is created. The valid indexes of a string are
the exact non-negative integers less than the length of the string. The first character of a string has index
0, the second has index 1, and so on.
Some of the procedures that operate on strings ignore the difference between upper and lower case. The
names of the versions that ignore case end with -ci (for “case insensitive”).
LispKit only supports mutable strings.

38.1 Basic constructors and procedures

(make-string k) procedure
(make-string k char)
The make-string procedure returns a newly allocated string of length k. If char is given, then all the
characters of the string are initialized to char, otherwise the contents of the string are unspecified.

184

LispPad Library Reference 2020-12-23

(string char …) procedure
Returns a newly allocated string composed of the arguments. It is analogous to procedure list .
(list->string list) procedure
Returns a newly allocated string composed of the characters contained in list.
(string-ref str k) procedure
The string-ref procedure returns character k of string str using zero-origin indexing. It is an error if k
is not a valid index of string str.
(string-set! str k char) procedure
The string-set! procedure stores char in element k of string str. It is an error if k is not a valid index
of string str.
(string-length str) procedure
Returns the number of characters in the given string str.

38.2 Predicates

(string? obj) procedure
Returns #t if obj is a string; otherwise returns #f .
(string-empty? str) procedure
Returns #t if str is an empty string, i.e. a string of length 0. Otherwise, string-empty? returns #f .
(string=? str …) procedure
Returns #t if all the strings have the same length and contain exactly the same characters in the same
positions; otherwise string=? returns #f .
(string<? str …) procedure
(string>? str …)
(string<=? str …)
(string>=? str …)
These procedures return #t if their arguments are (respectively): monotonically increasing, monoton-
ically decreasing, monotonically non-decreasing, or monotonically non-increasing. These predicates are
transitive.
These procedures compare strings in a lexicographic fashion; i.e. string<? implements a the lexi-
cographic ordering on strings induced by the ordering char<? on characters. If two strings differ in
length but are the same up to the length of the shorter string, the shorter string would be considered to
be lexicographically less than the longer string.
A pair of strings satisfies exactly one of string<? , string=? , and string>? . A pair of strings satisfies
string<=? if and only if they do not satisfy string>? . A pair of strings satisfies string>=? if and
only if they do not satisfy string<? .
(string-ci=?) procedure
Returns #t if, after case-folding, all the strings have the same length and contain the same characters in
the same positions; otherwise string-ci=? returns #f .
(string-ci<? str …) procedure
(string-ci<=? str …) (string-ci>? str …) (string-ci>=? str …)
These procedures compare strings in a case-insensitive fashion. The “-ci” procedures behave as if they
applied string-foldcase to their arguments before invoking the corresponding procedures without
“-ci”.

LispKit String 185

LispPad Library Reference 2020-12-23

(string-contains? str sub) procedure
Returns #t if string str contains string sub; returns #f otherwise.
(string-prefix? str sub) procedure
Returns #t if string str has string sub as a prefix; returns #f otherwise.
(string-suffix? str sub) procedure
Returns #t if string str has string sub as a suffix; returns #f otherwise.

38.3 Composing and extracting strings

Many of the following procedures accept an optional start and end argument as their last two arguments.
If both or one of these optional arguments are not provided, start defaults to 0 and end defaults to the
length of the corresponding string.
(string-contains str sub) procedure
(string-contains str sub start)
(string-contains str sub start end)
This procedure checks whether string sub is contained in string str within the index range start to end. It
returns the first index into str at which sub is fully contained within start and end. If sub is not contained
in the substring of str, then #f is returned.
(substring str start end) procedure
The substring procedure returns a newly allocated string formed from the characters of string str
beginning with index start and ending with index end. This is equivalent to calling string-copy with
the same arguments, but is provided for backward compatibility and stylistic flexibility.
(string-append str …) procedure
Returns a newly allocated string whose characters are the concatenation of the characters in the given
strings str ….
(string-concatenate list) procedure
(string-concatenate list sep)
Returns a newly allocated string whose characters are the concatenation of the characters in the strings
contained in list. sep is either a character or string, which, if provided, is used as a separator between two
strings that get concatenated. It is an error if list is not a proper list containing only strings as elements.
(string-upcase str) procedure
(string-downcase str)
(string-titlecase str)
(string-foldcase str)
These procedures apply the Unicode full string uppercasing, lowercasing, titlecasing, and case-folding al-
gorithms to their argument string str and return the result as a newly allocated string. It is not guaranteed
that the resulting string has the same lenght like str. Language-sensitive string mappings and foldings are
not used.
(string-normalize-diacritics str) procedure
Procedure string-normalize-diacritics transforms the given string str by normalizing diacritics and
returning the result as a newly allocated string.
(string-normalize-separators str) procedure
(string-normalize-separators str sep)
(string-normalize-separators str sep cset)

LispKit String 186

LispPad Library Reference 2020-12-23

Procedure string-normalize-separators normalizes string str by replacing sequences of separation
characters from character set cset with string or character sep. If sep is not provided, " " is used as a
default. If cset is not provided, all unicode newline and whitespace characters are used as a default for
cset. cset is either a string of separation characters or a character set as defined by library (lispkit
char-set) .
(string-copy str) procedure
(string-copy str start)
(string-copy str start end)
Returns a newly allocated copy of the part of the given string str between start and end.
(string-split str sep allow-empty?) procedure
Procedure string-split splits string str using the separator sep and returns a list of the component
strings, in order. sep is either a string or a character. Boolean argument allow-empty? determines whether
empty component strings are dropped. allow-empty? is #t by default.

(string-split "name-|-street-|-zip-|-city-|-" "-|-") ⇒ ("name" "street" "zip" "city" "")
(string-split "name-|-street-|-zip-|-city-|-" "-|-" #f) ⇒ ("name" "street" "zip" "city")

(string-trim str) procedure
(string-trim str chars)
Returns a newly allocated string by removing all characters from the beginning and end of string str that
are contained in chars. chars is either a string or it is a character set. If chars is not provided, whitespaces
and newlines are being removed.

(string-trim " lispkit is fun ") ⇒ "lispkit is fun"
(string-trim "________" "_") ⇒ ""
(string-trim "712+72=784" (char-set->string char-set:digit)) ⇒ "+72="
(string-trim "712+72=784" char-set:digit) ⇒ "+72="

(string-pad-right str char k) procedure
(string-pad-right str char k force-length?)
Procedure string-pad-right returns a newly allocated string created by padding string str at the
beginning of the string with character char until it is of length k. If k is less than the length of string str,
the resulting string gets truncated at length k if boolean argument force-length? is #t ; otherwise, the
string str gets returned as is.

(string-pad-right "scheme" #\space 8) ⇒ "scheme "
(string-pad-right "scheme" #\x 4) ⇒ "scheme"
(string-pad-right "scheme" #\x 4 #t) ⇒ "sche"
(string-pad-right "scheme" "_" 10) ⇒ "scheme____"

(string-pad-left str char k) procedure
(string-pad-left str char k force-length?)
Procedure string-pad-left returns a newly allocated string created by padding string str at the begin-
ning of the string with character char until it is of length k. If k is less than the length of string str, the
resulting string gets truncated at length k if boolean argument force-length? is #t ; otherwise, the string
str gets returned as is.

(string-pad-left "scheme" #\space 8) ⇒ " scheme"
(string-pad-left "scheme" #\x 4) ⇒ "scheme"
(string-pad-left "scheme" #\x 4 #t) ⇒ "heme"
(string-pad-left "scheme" "_" 10) ⇒ "____scheme"

LispKit String 187

LispPad Library Reference 2020-12-23

(string-pad-center str char k) procedure
(string-pad-center str char k force-length?)
Procedure string-pad-center returns a newly allocated string created by padding string str at the
beginning and end with character char until it is of length k, such that str is centered in the middle. If
k is less than the length of string str, the resulting string gets truncated at length k if boolean argument
force-length? is #t ; otherwise, the string str gets returned as is.

(string-pad-center "scheme" #\space 8) ⇒ " scheme "
(string-pad-center "scheme" #\x 4) ⇒ "scheme"
(string-pad-center "scheme" #\x 4 #t) ⇒ "heme"
(string-pad-center "scheme" "_" 10) ⇒ "__scheme__"

38.4 Manipulating strings

(string-replace! str sub repl) procedure
(string-replace! str sub repl start)
(string-replace! str sub repl start end)
Replaces all occurences of string sub in string str between indices start and endwith string repl and returns
the number of occurences of sub that were replaced.
(string-replace-first! str sub repl) procedure
(string-replace-first! str sub repl start)
(string-replace-first! str sub repl start end)
Replaces the first occurence of string sub in string str between indices start and end with string repl and
returns the index at which the first occurence of sub was replaced.
(string-insert! str repl) procedure
(string-insert! str repl start)
(string-insert! str repl start end)
Replaces the part of string str between index start and end with string repl. The default for start is 0, for
end it is (+ (string-length str) 1) .
(string-append! str other …) procedure
Appends the strings other, … to mutable string str in the given order.
(string-copy! to at from) procedure
(string-copy! to at from start)
(string-copy! to at from start end)
Copies the characters of string from between index start and end to string to, starting at index at. If the
source and destination overlap, copying takes place as if the source is first copied into a temporary string
and then into the destination. It is an error if at is less than zero or greater than the length of string to. It
is also an error if (- (string-length to) at) is less than (- end start) .
(string-fill! str fill) procedure
(string-fill! str fill start)
(string-fill! str fill start end)
The string-fill! procedure stores fill in the elements of string str between index start and end. It is
an error if fill is not a character.

LispKit String 188

LispPad Library Reference 2020-12-23

38.5 Iterating over strings

(string-map proc str …) procedure
The string-map procedure applies procedure proc element-wise to the characters of the strings str …
and returns a string of the results, in order. If more than one string str is given and not all strings have
the same length, string-map terminates when the shortest string runs out. It is an error if proc does not
accept as many arguments as there are strings and returns a single character.

(string-map char-foldcase "AbdEgH") ⇒ "abdegh"
(string-map (lambda (c) (integer->char (+ 1 (char->integer c)))) "HAL") ⇒ "IBM"

(string-for-each proc str …) procedure
The arguments to string-for-each are like the arguments to string-map , but string-for-each
calls proc for its side effects rather than for its values. Unlike string-map , string-for-each is
guaranteed to call proc on the characters of the strings in order from the first character to the last. If more
than one string str is given and not all strings have the same length, string-for-each terminates when
the shortest string runs out. It is an error for proc to mutate any of the strings. It is an error if proc does
not accept as many arguments as there are strings.

38.6 Converting strings

(string->list str) procedure
(string->list str start)
(string->list str start end)
The string->list procedure returns a list of the characters of string str between start and end preserving
the order of the characters.

38.7 Input/Output

(read-file path) procedure
Reads the text file at path and stores its content in a newly allocated string which gets returned by read-
file .
(write-file path str) procedure
Writes the characters of string str into a new text file at path. write-file returns #t if the file could
be written successfully; otherwise #f is returned.

LispKit String 189

39 LispKit System

39.1 Source files

(load filename) procedure
(load filename environment)
load reads a source file specified by filename and executes it in the given environment. If no environ-
ment is specified, the current interaction environment is used, which can be accessed via (interaction-
environment) . Execution of the file consists of reading expressions and definitions from the file, com-
piling them, and evaluating them sequentially in the environment. load returns the result of evaluating
the last expression or definition from the file. During compilation, the special form source-directory
can be used to access the directory in which the executed file is located.
It is an error if filename is not a string. If filename is not an absolute file path, LispKit will try to find the
file in a predefined set of directories, such as the default libraries search path. If no file name suffix, also
called path extension, is provided, the system will try to determine the right suffix. For instance, (load
"Prelude") will find the prelude file, determine its suffix and load and execute the file.

39.2 File paths

Files and directories are referenced by paths. Paths are strings consisting of directory names separated
by character '/' optionally followed by a file name (if the path refers to a file) and a path extension
(sometimes also called file name suffix, if the path refers to a file). Paths are either absolute, if they start
with character '/' , or they are relative to some unspecified directory.
If a relative path is used to refer to a concrete directory or file, e.g. in the API provided by library (lispkit
port) , typically the path is interpreted as relative to the path as defined by the parameter object current-
directory , unless specified otherwise.
current-directory parameter object
Defines the path referring to the current directory. Each LispKit virtual machine has its own current direc-
tory.
source-directory syntax
Returns the directory in which the source file is located which is currently being compiled and executed.
Typically, such source files are executed via procedure load .
(home-directory) procedure
(home-directory username)
Returns the path of the home directory of the user identified via string username. If username is not given,
the name of the current user is used as a default. The name of the current user can be retrieved via
procedure current-user-name .

(home-directory "objecthub") ⇒ "/Users/objecthub"

190

LispPad Library Reference 2020-12-23

(system-directory type) procedure
Returns a list of paths to system directories specified via symbol type for the current user. In most cases,
a single value is returned. The following type values are supported:
• desktop : The “Desktop” folder.
• downloads : The “Downloads” folder.
• movies : The “Movies” folder.
• music : Ths ”Music folder.
• pictures : The “Pictures” folder.
• documents : The “Documents” folder.
• shared-public : The “Public” folder.
• application-scripts : The folder where AppleScript source code is stored.
• temporary : A shared temporary folder.

(system-directory 'documents) ⇒ ("/Users/objecthub/Documents")

(path path comp …) procedure
Constructs a new relative file or directory path consisting of a relative (or absolute) base path base and a
number of path components comp…. If it is not possible to coonstruct a valid path, this procedure returns
#f .

(path "one" "two" "three.png") ⇒ "one/two/three.png"

(parent-path path) procedure
Returns the parent path of path. The result is either a relative path if path is relative, or the result is an
absolute path. parent-path returns #f if path is not a valid path.

(parent-path "one/two/three.png") ⇒ "one/two"
(parent-path "three.png") ⇒ "."

(path-components path) procedure
Returns the individual components of a (relative or absolute) path as a list of strings. Returns #f if path
is not a valid path.

(path-components "one/two/three.png") ⇒ ("one" "two" "three.png")

(file-path path) procedure
(file-path path base)
Constructs a new absolute file or directory path consisting of a base path base and a relative file path
path.

(file-path "Photos/img01.jpg" "/Users/objecthub") ⇒ "/Users/objecthub/Photos/img01.jpg"

(asset-file-path name type) procedure
(asset-file-path name type dir)
Returns a new absolute file or directory path to a LispKit asset. An asset is identified via a file name, a
file type, and an optional directory path dir. name, type, and dir are all strings. An asset is a file which is
located directly or indirectly in one of the asset directories part of the LispKit installation. An asset has a
type, which is the default path extension of the file (e.g. "png" for PNG images). If dir is provided, it is
a relative path to a sub-directory within a matching asset directory.

LispKit System 191

LispPad Library Reference 2020-12-23

asset-file-path constructs a relative file path in the following way (assuming there is no existing file
path extension already):
dir/name.type

It then searches the asset paths in their given order for a file matching this relative file path. Once the
first matching file is found, an absolute file path for this file is returned by asset-file-path . If no valid
(and existing) file is found, asset-file-path returns #f .
(parent-file-path path) procedure
If path refers to a file, then parent-file-path returns the directory in which this file is contained. If path
refers to a directory, then parent-file-path returns the directory in which this directory is contained.
The result of parent-file-path is always an absolute path.
(path-extension path) procedure
Returns the path extension of path or #f if there is no path extension.

(path-extension "/foo/bar.txt") ⇒ "txt"
(path-extension "/foo/bar") ⇒ #f

(append-path-extension path ext opt) procedure
Appends path extension string ext to the file path path. The extension is added no matter whether path
has an extension already or not, unless opt is set to #t , in which case extension ext is only added if there
is no extension already.

(append-path-extension "/foo/bar" "txt") ⇒ "/foo/bar.txt"
(append-path-extension "/foo/bar.txt" "mp3") ⇒ "/foo/bar.txt.mp3"
(append-path-extension "/foo/bar.txt" "mp3" #t) ⇒ "/foo/bar.txt"
(append-path-extension "" "txt") ⇒ #f

(remove-path-extension path) procedure
Removes the path extension of path if one exists and returns the resulting path. If no path extension exists,
path is returned.

(remove-path-extension "/foo/bar") ⇒ "/foo/bar"
(remove-path-extension "/foo/bar.txt") ⇒ "/foo/bar"
(remove-path-extension "/foo/bar.txt.mp3") ⇒ "/foo/bar.txt"
(remove-path-extension "") ⇒ ""

(file-path-root? path) procedure
Returns #t if path exists and corresponds to the root of the directory hierarchy. The root is typically
equivalent to “/”. It is an error if path is not a string.

39.3 File operations

LispKit supports ways to explore the file system, test if files or directories exist, read and write files, list
directory contents, get metadata about files (e.g. file sizes), etc. Most of this functionality is provided by
the libraries (lispkit system) and (lispkit port) .
(file-exists? filepath) procedure
The file-exists? procedure returns #t if the named file exists at the time the procedure is called,
and #f otherwise. It is an error if filename is not a string.

LispKit System 192

LispPad Library Reference 2020-12-23

(directory-exists? dirpath) procedure
The directory-exists? procedure returns #t if the named directory exists at the time the procedure
is called, and #f otherwise. It is an error if filename is not a string.
(file-or-directory-exists? path) procedure
The file-or-directory-exists? procedure returns #t if the named file or directory exists at the
time the procedure is called, and #f otherwise. It is an error if filename is not a string.
(file-readable? path) procedure
Returns #t if the file at path exists and is readable; returns #f otherwise.
(directory-readable? path) procedure
Returns #t if the directory at path exists and is readable; returns #f otherwise.
(file-writable? path) procedure
Returns #t if the file at path exists and is writable; returns #f otherwise.
(directory-writable? path) procedure
Returns #t if the directory at path exists and is writable; returns #f otherwise.
(file-deletable? path) procedure
Returns #t if the file at path exists and is deletable; returns #f otherwise.
(directory-deletable? path) procedure
Returns #t if the file at path exists and is deletab; returns #f otherwise.
(delete-file filepath) procedure
The delete-file procedure deletes the file specified by filepath if it exists and can be deleted. If the
file does not exist or cannot be deleted, an error that satisfies file-error? is signaled. It is an error if
filepath is not a string.
(delete-directory dirpath) procedure
The delete-directory procedure deletes the directory specified by dirpath if it exists and can be deleted.
If the directory does not exist or cannot be deleted, an error that satisfies file-error? is signaled. It
is an error if dirpath is not a string.
(delete-file-or-directory path) procedure
The delete-file-or-directory procedure deletes the directory or file specified by path if it exists and
can be deleted. If path neither leads to a file nor a directory or the file or directory cannot be deleted, an
error that satisfies file-error? is signaled. It is an error if path is not a string.
(copy-file filepath targetpath) procedure
The copy-file procedure copies the file specified by filepath to the file specified by targetpath. An error
satisfying file-error? is signaled if filepath does not lead to an existing file or if a file at targetpath
cannot be written. It is an error if either filepath or targetpath are not strings.
(copy-directory dirpath targetpath) procedure
The copy-directory procedure copies the directory specified by dirpath to the directory specified by
targetpath. An error satisfying file-error? is signaled if dirpath does not lead to an existing directory
or if a directory at targetpath cannot be written. It is an error if either dirpath or targetpath are not
strings.
(copy-file-or-directory sourcepath targetpath) procedure
The copy-file-or-directory procedure copies the file or directory specified by sourcepath to the file
or directory specified by targetpath. An error satisfying file-error? is signaled if sourcepath does not
lead to an existing file or directory, or if a file or directory at targetpath cannot be written. It is an error if
either sourcepath or targetpath are not strings.

LispKit System 193

LispPad Library Reference 2020-12-23

(move-file filepath targetpath) procedure
Moves the file at filepath to targetpath. This procedure fails if filepath does not reference an existing file,
or if the file cannot be moved to targetpath. It is an error if either filepath or targetpath are not strings.
(move-directory dirpath targetpath) procedure
Moves the directory at dirpath to targetpath. This procedure fails if dirpath does not reference an existing
directory, or if the directory cannot be moved to targetpath. It is an error if either dirpath or targetpath
are not strings.
(move-file-or-directory sourcepath targetpath) procedure
Moves the file or directory at sourcepath to targetpath. This procedure fails if sourcepath does not reference
an existing file or directory, or if the file or directory cannot be moved to targetpath. It is an error if either
sourcepath or targetpath are not strings.
(file-size filepath) procedure
Returns the size of the file specificed by filepath in bytes. It is an error if filepath is not a string or if filepath
does not reference an existing file.
(directory-list dirpath) procedure
Returns a list of names of files and directories contained in the directory specified by dirpath. It is an error
if dirpath is not a string or if dirpath does not reference an existing directory.
(make-directory dirpath) procedure
Creates a directory with path dirpath. If the directory exists already or if it is not possible to create a
directory with path dirpath, make-directory fails with an error. It is an error if dirpath is not a string.
(open-file filepath) procedure
(open-file filepath app)
(open-file filepath app activate)
Opens the file specified by filepath with the application app. activate is a boolean argument. If it is #t , it
will make app the frontmost application after invoking it. If app is not specified, the default application
for the type of the file specified by filepath is used. If activate is not specified, it is assumed it is #t
. open-file returns #t if it was possible to open the file, #f otherwise. Example: (open-file
"/Users/objecthub/main.swift" "TextEdit") .

39.4 Network operations

(open-url url) procedure
Opens the given url in the default browser and makes the browser the frontmost application.
(http-get url) procedure
(http-get url timeout)
http-get performs an http get request for the given URL. timeout is a floating point number defining
the time in seconds it should take at most for receiving a response. http-get returns two values: the
HTTP header in form of an association list, and the content in form of a bytevector. It is an error if the
http get request fails. Example:

(http-get "http://github.com/objecthub")
⇒
(("Date" . "Sat, 17 Nov 2018 22:47:19 GMT")
("Referrer-Policy" . "origin-when-cross-origin, strict-origin-when-cross-origin")
("X-XSS-Protection" . "1; mode=block")
("Status" . "200 OK")
("Transfer-Encoding" . "Identity")
...

LispKit System 194

LispPad Library Reference 2020-12-23

("Content-Type" . "text/html; charset=utf-8")
("Server" . "GitHub.com"))
#u8(10 10 60 33 68 79 67 84 89 80 69 32 104 116 109 108 62 10 60 104 116 109 108 32 108 97 110

103 61 34 101 110 34 62 10 32 32 60 104 101 97 100 62 10 32 32 32 32 60 109 101 116 97 32 99
104 97 114 115 101 116 61 34 117 116 102 ...)

↪

↪

39.5 Time operations

(current-second) procedure
Returns a floating-point number representing the current time on the International Atomic Time (TAI)
scale. The value 0.0 represents midnight on January 1, 1970 TAI (equivalent to ten seconds before
midnight UTC) and the value 1.0 represents one TAI second later. Note: The current implementation
returns the same number like current-seconds . This is not conforming to the R7RS spec requiring TAI
scale.
(current-jiffy) procedure
Returns the number of jiffies as a fixnum that have elapsed since an arbitrary epoch. A jiffy is a fraction
of a second which is defined by the return value of the jiffies-per-second procedure. The starting
epoch is guaranteed to be constant during a run of the program, but may vary between runs.
(jiffies-per-second) procedure
Returns a fixnum representing the number of jiffies per SI second. Here is an example for how to use
jiffies-per-second :

(define (time-length)
(let ((list (make-list 100000))

(start (current-jiffy)))
(length list)
(/ (- (current-jiffy) start) (jiffies-per-second))))

39.6 Locales

For handling locale-specific behavior, e.g. for formatting numbers and dates, library (lispkit system)
defines a framework in which
• regions/countries are identified via ISO 3166-1 Alpha 2-code strings,
• languages are identified via ISO 639-1 2-letter strings, and
• locales (i.e. combinations of regions and languages) are identified as symbols.

Library (lispkit system) provides functions for returning all available regions, languages, and locales.
It also defines functions to map identifiers to human-readable names and to construct identifiers out of
other identifiers.
(available-regions) procedure
Returns a list of 2-letter region code identifiers (strings) for all available regions.
(region-name ident) procedure
(region-name ident locale)
Returns the name of the region identified by the 2-letter region code string ident for the given locale locale.
If locale is not provided, the current (system-provided) locale is used.
(available-languages) procedure
Returns a list of 2-letter language code identifiers (strings) for all available languages.

LispKit System 195

LispPad Library Reference 2020-12-23

(language-name ident) procedure
(language-name ident locale)
Returns the name of the language identified by the 2-letter language code string ident for the given locale
locale. If locale is not provided, the current (system-configured) locale is used.
(available-locales) procedure
Returns a list of all available locale identifiers (symbols).
(available-locale? locale) procedure
Returns #t if the symbol locale is identifying a locale supported by the operating system; returns #f
otherwise.
(locale) procedure
(locale lang)
(locale lang country)
If no argument is provided locale returns the current locale (symbol) which got configured by the
user for the operation system. If the string argument lang is provided, a locale representing lang (and all
countries for which lang is supported) is returned. If both lang and string country are provided, locale
will return a symbol identifying the corresponding locale.
This function never fails if both lang and country are strings. It can be used for constructing locales that
are not supported by the underlying operating system. This can be checked with function available-
locale? .

(locale) ⇒ en_US
(locale "de") ⇒ de
(locale "en" "GB") ⇒ en_GB

(locale-region locale) procedure
Returns the 2-letter region code string for the region targeted by the locale identifier locale. If locale does
not target a region, locale-region returns #f .
(locale-language locale) procedure
Returns the 2-letter language code string for the language targeted by the locale identifier locale. If locale
does not target a language, locale-language returns #f .
(locale-currency locale) procedure
Returns the 3-letter currency code string for the currency associated with the country targeted by locale.
If locale does not target a country, locale-currency returns #f .

39.7 Execution environment

(get-environment-variable name) procedure
Many operating systems provide each running process with an environment consisting of environment
variables. Both the name and value of an environment variable are represented as strings. The procedure
get-environment-variable returns the value of the environment variable name, or #f if the named
environment variable is not found.

(get-environment-variable "PATH") ⇒ "/usr/local/bin:/usr/bin:/bin"

(get-environment-variables) procedure
Returns the names and values of all the environment variables as an association list, where the car of each

LispKit System 196

LispPad Library Reference 2020-12-23

entry is the name of an environment variable and the cdr is its value, both as strings. Example: (("USER"
. "root") ("HOME" . "/")) .
(command-line) procedure
Returns the command line passed to the process as a list of strings. The first string corresponds to the
command name.
(features) procedure
Returns a list of the feature identifiers which cond-expand treats as true. Here is an example of what
features might return: (modules x86-64 lispkit macosx syntax-rules complex 64bit macos
little-endian dynamic-loading ratios r7rs) . LispKit supports at least the following feature
identifiers:
• lispkit
• r7rs
• ratios
• complex
• syntax-rules
• little-endian
• big-endian
• dynamic-loading
• modules
• 32bit
• 64bit
• macos
• macosx
• ios
• linux
• i386
• x86-64
• arm64
• arm

(implementation-name) procedure
Returns the name of the Scheme implementation. For LispKit, this function returns the string “LispKit”.
(implementation-version) procedure
Returns the version of the Scheme implementation as a string.
(cpu-architecture) procedure
Returns the CPU architecture on which this Scheme implementation is executing as a string.
(machine-name) procedure
Returns a name for the particular machine on which the Scheme implementation is currently running.
(machine-model) procedure
Returns an identifier for the machine on which the Scheme implementation is currently running.
(os-type) procedure
Returns the type of the operating system on which the Scheme implementation is running as a string. For
macOS, this procedure returns “Darwin”.
(os-name) procedure
Returns the name of the operating system on which the Scheme implementation is running as a string.
For macOS, this procedure returns “macOS”.
(os-version) procedure
Returns the build number of the operating system on which the Scheme implementation is running as a

LispKit System 197

LispPad Library Reference 2020-12-23

string. For macOS 10.14.1, this procedure returns “18B75”.
(os-release) procedure
Returns the (major) release version of the operating system on which the Scheme implementation is
running as a string. For macOS 10.14.1, this procedure returns “10.14”.
(current-user-name) procedure
Returns the username of the user running the Scheme implementation as a string.
(user-data username) procedure
Returns information about the user specified via username in form of a list. The list provides the following
information in the given order:
1. User id (fixnum)
2. Group id (fixnum)
3. Username (string)
4. Full name (string)
5. Home directory (string)
6. Default shell (string)

Here is an example showing the result for invocation (user-data "objecthub") : (501 20 "objec-
thub" "Max Mustermann" "/Users/objecthub/" "/bin/bash") .

LispKit System 198

40 LispKit System OS

Library (lispkit system os) currently defines a single procedure system-call for invoking external
binaries as a sub-process of the LispKit interpreter. This library is operating system specific and requires
careful usage in portable code.
(system-call path args) procedure
(system-call path args env)
(system-call path args env port)
(system-call path args env port input)
Executes the binary at path passing the string representation of the elements of list args as command-line
arguments. env is an association list defining environment variables. Both keys and values are strings. The
output generated by executing the binary is directed towards port, which is a textual output port. The
default for port corresponds to current-output-port , a parameter object defined by library (lispkit
port) . Providing #f as port will send the output to /dev/null . input is an optional string which can
be used to pipe data into the binary as input. The current implementation is not able to handle interactive
binaries. system-call returns the result code for executing the binary (0 refers to a regular exit).

> (system-call "/bin/ls" '(-a -l))
total 863816
drwx------@ 47 objecthub 1504 Jun 8 10:56 Desktop
drwx------@ 96 objecthub 3072 Jun 7 16:39 Documents
drwx------@ 589 objecthub 18848 May 31 16:59 Downloads
drwx------@ 41 objecthub 1312 Dec 19 22:51 Google Drive
drwx------@ 84 objecthub 2688 Feb 15 18:32 Library
drwx------+ 16 objecthub 512 Oct 20 2019 Movies
drwx------+ 10 objecthub 320 Oct 20 2019 Music
drwx------+ 10 objecthub 320 May 17 18:37 Pictures
drwxr-xr-x+ 5 objecthub 160 Nov 23 2016 Public
0
> (system-call "/usr/bin/bc" '(-q) '() (current-output-port) "10*(11+9)/2\n")
100
0

199

41 LispKit Test

Library (lispkit test) provides an API for writing unit tests. The API is largely compatible to similar
APIs that are bundled with popular Scheme interpreters and compilers.

41.1 Test groups

Tests are bundled in test groups. A test group contains actual tests comparing acual with expected values
and nested test groups. Test groups may be given a namewhich is used for reporting on the testing progress
and displaying aggregate test results for each test group.
The following code snippet illustrates how test groups are typically structured:

(test-begin "Test group example")
(test "Sum of first 10 integers" 45 (apply + (iota 10)))
(test 64 (gcd 1024 192))
(test-approx 1.414 (sqrt 2.0))
(test-end)

This code creates a test group with name Test group example . The test group defines three tests, one
verifying the result of (apply + (iota 10)) , one testing gcd and one testing sqrt . When executed,
the following output is shown:

╒═══
│ Basic unit tests
└───
[PASS] Sum of first 10 integers
[PASS] (gcd 1024 192)
[FAIL] (sqrt 2.0): expected 1.414 but received 1.414213562373095
┌───
│ Basic unit tests
│ 3 tests completed in 0.001 seconds
│ 2 (66.66%) tests passed
│ 1 (33.33%) tests failed
╘═══

Procedure test-begin opens a new test group. It is optionally given a test group name. Anonymous test
groups (without name) are supported, but not encouraged as they make it more difficult to understand
the testing output.
Special forms such as test and test-approx are used to compare expected values with actual result
values. Expected values always preceed the actual values. Tests might also be given a name, which is
used instead of the expression to test in the test report. test , test-approx , etc. need to be called in
the context of a test group, otherwise the syntactical forms will fail. This is different from other similar
libraries which often have an anonymous top-level test group implicitly.
Here is the structure of a more complicated testing setup which has a top-level test group Library tests
and two nested test groups Functionality A and Functionality B .

200

LispPad Library Reference 2020-12-23

(test-begin "Library tests")
(test-begin "Functionality A")
(test ...)
...
(test-end)
(test-begin "Functionality B")
...
(test-end)

(test-end)

The syntactic form test-group can be used to write small test groups more concisely. This code defines
the same test group as above using test-group :

(test-group "Library tests"
(test-group "Functionality A"

(test ...)
...)

(test-group "Functionality B"
(test ...)
...))

41.2 Defining test groups

(test-begin) procedure
(test-begin name)
A new test group is opened via procedure test-begin . name defines a name for the test group. The
name is primarily used in the test report to refer to the test group.
(test-end) procedure
(test-end name)
The currently open test group gets closed by calling procedure test-end . Optionally, for documentation
and validation purposes, it is possible to provide name. If explicitly given, it has to match the name of
the corresponding test-begin call in terms of equal? . When test-end is called, a summary gets
printed listing stats such as passed/failed tests, the time it took to execute the tests in the group, etc.
(test-exit) procedure
(text-exit obj)
This procedure should be placed at the top-level of a test script. It raises an error if it is placed in the
context of an open test group. If obj is provided and failures were encountered in the previously closed
top-level test group, test-exit will exit the evaluation of the code by invoking (exit obj) .
(test-group name body …) syntax
test-group is a syntactical shortcut for opening and closing a new named test group. It is equivalent
to:

(begin
(test-begin name)
body ...
(test-end))

(test-group-failed-tests) procedure
Returns the number of failed tests in the innermost active test group.

LispKit Test 201

LispPad Library Reference 2020-12-23

(test-group-passed-tests) procedure
Returns the number of passed tests in the innermost active test group.
(failed-tests) procedure
Returns the number of failed tests in all currently active test group.
(passed-tests) procedure
Returns the number of passed tests in all currently active test group.

41.3 Comparing actual with expected values

(test exp tst) syntax
(test name exp tst)
Main syntax for comparing the result of evaluating expression tst with the expected value exp. The pro-
cedure stored in parameter object current-test-comparator is used to compare the actual value with the
expected value. name is supposed to be a string and used to report success and failure of the test. If not
provided, the output of (display tst) is used as a name instead. test catches errors and prints
informative failure messages, including the name, what was expected and what was computed. test is
a convenience wrapper around test-equal that catches common mistakes.
(test-equal exp tst) syntax
(test-equal name exp tst)
(test-equal name exp tst eq)
Compares the result of evaluating expression tst with the expected value exp. The procedure eq is used
to compare the actual value with the expected value exp. If eq is not provided, the procedure stored in
parameter object current-test-comparator is used as a default. name is supposed to be a string and it is
used to report success and failure of the test. If not provided, the output of (display tst) is used as a
name instead. test-equal catches errors and prints informative failure messages, including the name,
what was expected and what was computed.
(test-assert tst) syntax
(test-assert name tst)
test-assert asserts that the test expression tst is not false. It is a convenience wrapper around test-
equal . name is supposed to be a string. It is used to report success and failure of the test. If not provided,
the output of (display tst) is used as a name instead.
(test-error tst) syntax
(test-error name tst)
test-error asserts that the test expression tst fails by raising an error. name is supposed to be a string.
It is used to report success and failure of the test. If not provided, the output of (display tst) is used
as a name instead.
(test-approx exp tst) syntax
(test-approx name exp tst)
Compares the result of evaluating expression tstwith the expected floating-point value exp. The procedure
approx-equal? is used to compare the actual value with the expected flonum value exp. approx-
equal? uses the parameter object current-test-epsilon to determine the precision of the comparison
(the default is 0.0000001). name is supposed to be a string. It is used to report success and failure of the
test. If not provided, the output of (display tst) is used as a name instead. test-approx catches
errors and prints informative failure messages, including the name, what was expected and what was
computed.

LispKit Test 202

LispPad Library Reference 2020-12-23

(test-not tst) syntax
(test-not name tst)
test-not asserts that the test expression tst is false. It is a convenience wrapper around test-equal .
name is supposed to be a string. It is used to report success and failure of the test. If not provided, the
output of (display tst) is used as a name instead.
(test-values exp tst) syntax
(test-values name exp tst)
Compares the result of evaluating expression tst with the expected values exp. exp should be of the form
(values x ...) . As opposed to test and test-equal , test-values works for multiple return
values in a portable fashion. The procedure stored in parameter object current-test-comparator is used as
a comparison procedure. name is expected to be a string.

41.4 Test utilities

current-test-comparator parameter object
Parameter object referring to the default comparison procedure for test and the test-* syntactical
forms. By default, current-test-comparator refers to equal? .
current-test-epsilon parameter object
Maximum difference allowed for inexact comparisons via procedure approx-equal? . By default, this
parameter object is set to 0.0000001 .
(approx-equal? x y) procedure
(approx-equal? x y epsilon)
Compares numerical value x with numerical value y and returns #t if x and y are approximately true.
They are approximately true if x and y differ at most by epsilon. If epsilon is not provided, the value of
parameter object current-test-epsilon is used as a default.
(write-to-string obj) procedure
Writes value obj into a new string using procedure write , unless obj is a pair, in which case write-
to-string interprets it as a Scheme expression and uses shortcut syntax for special forms such as quote
, quasiquote , etc. This procedure is used to convert expressions into names of tests.

LispKit Test 203

42 LispKit Type

Library (lispkit type) provides a simple, lightweight type abstraction mechanism. It allows for
creating new types at runtime that are disjoint from all existing types. The library provides two different
types of APIs: a purely procedural API for type creation and management, as well as a declarative API.
The procedural API does not have an explicit representation of types. The declarative API introduces
extensible types which do have a runtime representation.

42.1 Usage of the procedural API

New types are created with function make-type . make-type accepts one argument, which is a type
label. The type label is an arbitrary value that is only used for debugging purposes. Typically, symbols are
used as type labels.
The following line introduces a new type for intervals:

(define-values (new-interval interval? interval-ref make-interval-subtype)
(make-type 'interval))

(make-type 'interval) returns four functions:
• new-interval is a procedure which takes one argument, the internal representation of the interval,
and returns a new object of the new interval type

• interval? is a type test predicate which accepts one argument and returns #t if the argument is
of the new interval type, and #f otherwise.

• interval-ref takes one object of the new interval type and returns its internal representation.
interval-ref is the inverse operation of new-interval .

• make-interval-subtype is a type generator (similar to make-type), a function that takes a type
label and returns four functions representing a new subtype of the interval type.

Now it is possible to implement a constructor make-interval for intervals:

(define (make-interval lo hi)
(if (and (real? lo) (real? hi) (<= lo hi))

(new-interval (cons (inexact lo) (inexact hi)))
(error "make-interval: illegal arguments" lo hi)))

make-interval first checks that the constructor arguments are valid and then calls new-interval to
create a new interval object. Interval objects are represented via pairs whose car is the lower bound, and
cdr is the upper bound. Nevertheless, pairs and interval objects are distinct values as the following code
shows:

(define interval-obj (make-interval 1.0 9.5))
(define pair-obj (cons 1.0 9.5))

(interval? interval-obj) ⇒ #t
(interval? pair-obj) ⇒ #f
(equal? interval-obj pair-obj) ⇒ #f

204

LispPad Library Reference 2020-12-23

The type is displayed along with the representation in the textual representation of interval objects: #in-
terval:(1.0 . 9.5) .
Below are a few functions for interval objects. They all use interval-ref to extract the internal repre-
sentation from an interval object and then operate on the internal representation.

(define (interval-length interval)
(let ((bounds (interval-ref interval)))

(- (cdr bounds) (car bounds))))

(define (interval-empty? interval)
(zero? (interval-length interval)))

The following function calls show that interval-ref fails with a type error if its argument is not an
interval object.

(interval-length interval-obj) ⇒ 8.5
(interval-empty? '(1.0 . 1.0)) ⇒

[error] not an instance of type interval: (1.0 . 1.0)

42.2 Usage of the declarative API

The procedural API provides the most flexible way to define a new type in LispKit. On the other hand,
this approach comes with two problems:
1. a lot of boilerplate needs to be written, and
2. programmers need to be experienced to correctly encapsulate new data types and to provide means
to extend them.

These problems are addressed by the declarative API of (lispkit type) . At the core, this API de-
fines a syntax define-type for declaring new types of data. define-type supports defining simple,
encapsulated types as well as provides a means to make types extensible.
The syntax for defining a simple, non-extensible type has the following form:
(define-type name name?

((make-name x…) expr…)
name-ref
functions)

name is a symbol and defines the name of the new type. name? is a predicate for testing whether a given
object is of type name. make-name defines a constructor which returns a value representing the data of the
new type. name-ref is a function to unwrap values of type name. It is optional and normally not needed
since functions can be declared such that the unwrapping happens implicitly. All functions defined via
define-type take an object (usually called self) of the defined type as their first argument.
There are two forms to declare a function as part of define-type : one providing access to self directly,
and one only providing access to the unwrapped data value:
((name-func self y …) expr…)

provides access directly to self (which is a value of type name), and
((name-func (repr) y …) expr…)

which provides access only to the unwrapped data repr .
With this new syntax, type interval from the section describing the procedural API, can now be re-
written like this:

LispKit Type 205

LispPad Library Reference 2020-12-23

(define-type interval
interval?
((make-interval lo hi)

(if (and (real? lo) (real? hi) (<= lo hi))
(cons (inexact lo) (inexact hi))
(error "make-interval: illegal arguments" lo hi)))

((interval-length (bounds))
(- (cdr bounds) (car bounds)))

((interval-empty? self)
(zero? (interval-length self))))

interval is a standalone type which cannot be extended. define-type provides a simple means to
make types extensible such that subtypes can be created reusing the base type definition. This is done
with a small variation of the define-type syntax:
(define-type (name super) name?

((make-name x…) expr…)
name-ref
functions)

In this syntax, super refers to the type extended by name. All extensible types extend another extensible
type and there is one supertype called object provided by library (lispkit type) as a primitive.
With this syntactic facility, interval can be easily re-defined to be extensible:

(define-type (interval object)
interval?
((make-interval lo hi)

(if (and (real? lo) (real? hi) (<= lo hi))
(cons (inexact lo) (inexact hi))
(error "make-interval: illegal arguments" lo hi)))

((interval-length (bounds))
(- (cdr bounds) (car bounds)))

((interval-empty? self)
(zero? (interval-length self))))

It is now possible to define a tagged-interval data structure which inherits all functions from interval
and encapsulates a tag with the interval:

(define-type (tagged-interval interval)
tagged-interval?
((make-tagged-interval lo hi tag)

(values lo hi tag))
((interval-tag (bounds tag))

tag))

tagged-interval is a subtype of interval ; i.e. values of type tagged-interval are also considered
to be of type interval . Thus, tagged-interval inherits all function definitions from interval and
defines a new function interval-tag just for tagged-interval values. Here is some code explaining
the usage of tagged-interval :

(define ti (make-tagged-interval 4.0 9.0 'inclusive))
(tagged-interval? ti) ⇒ #t
(interval? ti) ⇒ #t
(interval-length ti) ⇒ 5.0
(interval-tag ti) ⇒ inclusive
(interval-tag interval-obj) ⇒ [error] not an instance of type tagged-interval: #interval:((1.0

. 9.5))↪

LispKit Type 206

LispPad Library Reference 2020-12-23

Constructors of extended types, such as make-tagged-interval return multiple values: all the param-
eters for a super-constructor call and one additional value (the last value) representing the data provided
by the extended type. In the example above, make-tagged-interval returns three values: lo , hi ,
and tag . After the constructor make-tagged-interval is called, the super-constructor is invoked with
arguments lo and hi . The result of make-tagged-interval is a tagged-interval object consisting
of two state values contained in a list: one for the supertype interval (consisting of the bounds (lo
. hi)) and one for the subtype tagged-interval (consisting of the tag). This can also be seen when
displaying a tagged-interval value:

ti ⇒ #tagged-interval:((4.0 . 9.0) inclusive)

This is also the reason why function interval-tag gets access to two unwrapped values, bounds and
tag : one (bounds) corresponds to the value associated with type interval , and the other one (tag
) corresponds to the value associated with type tagged-interval .

42.3 API

(make-type type-label) procedure
Creates a new, unique type, and returns four procedures dealing with this new type:
1. The first procedure takes one argument returning a new object of the new type wrapping the argu-
ment

2. The second procedure is a type test predicate which accepts one argument and returns #t if the
argument is of the new type, and #f otherwise.

3. The third procedure takes one object of the new type and returns its internal representation (what
was passed to the first procedure).

4. The fourth procedure is a type generator (similar to make-type), a function that takes a type label
and returns four functions representing a new subtype of the new type.

type-label is only used for debugging purposes. It is shown when an object’s textual representation is used.
In particular, calling the third procedure (the type de-referencing function) will result in an error message
exposing the type label if the argument is of a different type than expected.
(define-type name name? ((make-name x …) e …) func…) syntax
(define-type name name? ((make-name x …) e …) ref func…)
Defines a new standalone type name consisting of a type test predicate name?, a constructor make-name,
and an optional function ref used to unwrap values of type name. ref is optional and normally not needed
since functions func can be declared such that the unwrapping happens implicitly. All functions func de-
fined via define-type take an object (usually called self) of the defined type as their first argument.
There are two ways to declare a function as part of define-type : one providing access to self directly,
and one only providing access to the unwrapped data value:
• ((name-func self y …) expr …) provides access directly to self (which is a value of type name),
and

• ((name-func (repr) y …) expr…) provides access only to the unwrapped data repr .
(define-type (name super) name? ((make-name x …) e …) func…) syntax
(define-type (name super) name? ((make-name x …) e …) ref func…)
This variant of define-type defines a new extensible type name extending supertype super, which also
needs to be an extensible type. A new extensible type name comes with a type test predicate name?, a
constructor make-name, and an optional function ref used to unwrap values of type name. ref is optional

LispKit Type 207

LispPad Library Reference 2020-12-23

and normally not needed since functions func can be declared such that the unwrapping happens implicitly.
All functions func defined via define-type take an object (usually called self) of the defined type as
their first argument.
There are two ways to declare a function as part of define-type : one providing access to self directly,
and one providing access to the unwrapped data values (one for each type in the supertype chain):
• ((name-func self y …) expr …) provides access directly to self (which is a value of type name),
and

• ((name-func (repr…) y …) expr…) provides access only to the unwrapped data values repr
.

Constructors of extended types return multiple values: all the parameters for a super-constructor call and
one additional value (the last value) representing the data provided by the extended type.
object value
The supertype of all extensible types defined via define-type .
(extensible-type? obj) procedure
Returns #t if obj is a value representing an extensible type. For instance, (extensible-type? object)
returns #t .

LispKit Type 208

43 LispKit Vector

Vectors are heterogeneous data structures whose elements are indexed by a range of integers. A vector
typically occupies less space than a list of the same length, and a randomly chosen element can be accessed
in constant time vs. linear time for lists.
The length of a vector is the number of elements that it contains. This number is a non-negative integer
that is fixed when the vector is created. The valid indexes of a vector are the exact, non-negative integers
less than the length of the vector. The first element in a vector is indexed by zero, and the last element is
indexed by one less than the length of the vector.
Two vectors are equal? if they have the same length, and if the values in corresponding slots of the
vectors are equal? .
A vector can bemutable or immutable. Trying to change the state of an immutable vector, e.g. via vector-
set! will result in an error being raised.
Vectors are written using the notation #(obj ...) . For example, a vector of length 3 containing the
number zero in element 0, the list (1 2 3 4) in element 1, and the string “Lisp” in element 2 can be written
as follows: #(0 (1 2 3 4) "Lisp") .
Vector constants are self-evaluating, so they do not need to be quoted in programs. Vector constants,
i.e. vectors created with a vector literal, are immutable.
LispKit also supports growable vectors via library (lispkit gvector) . As opposed to regular vectors, a
growable vector does not have a fixed size and supports adding and removing elements. While a growable
vector does not satisfay the vector? predicate, this library also accepts growable vectors as parameters
whenever a vector is expected. Use predicate mutable-vector? for determining whether a vector is
either a regular mutable vector or a growable vector.

43.1 Predicates

(vector? obj) procedure
Returns #t if obj is a regular vector; otherwise returns #f . This function returns #f for growable
vectors; see library (lispkit gvector) .
(mutable-vector? obj) procedure
Returns #t if obj is either a mutable regular vector or a growable vector (see library (lispkit gvector)
); otherwise returns #f .
(immutable-vector? obj) procedure
Returns #t if obj is an immutable vector; otherwise returns #f .
(vector= eql vector …) procedure
Procedure vector= is a generic comparator for vectors. Vectors a and b are considered equal by vector=
if their lengths are the same, and for each respective elements ai and bi, (eql ai bi) evaluates to true.
eql is always applied to two arguments.
If there are only zero or one vector argument, #t is automatically returned. The dynamic order in which
comparisons of elements and of vectors are performed is unspecified.

209

LispPad Library Reference 2020-12-23

(vector= eq? #(a b c d) #(a b c d)) ⇒ #t
(vector= eq? #(a b c d) #(a b d c)) ⇒ #f
(vector= = #(1 2 3 4 5) #(1 2 3 4)) ⇒ #f
(vector= = #(1 2 3 4) #(1.0 2.0 3.0 4.0)) ⇒ #t
(vector= eq?) ⇒ #t
(vector= eq? '#(a)) ⇒ #t

43.2 Constructors

(make-vector k) procedure
(make-vector k fill)
Returns a newly allocated vector of k elements. If a second argument is given, then each element is
initialized to fill. Otherwise the initial contents of each element is unspecified.
(vector obj …) procedure
Returns a newly allocated mutable vector whose elements contain the given arguments. It is analogous
to list .

(vector ’a ’b ’c) ⇒ #(a b c)

(immutable-vector obj …) procedure
Returns a newly allocated immutable vector whose elements contain the given arguments in the given
order.
(list->vector list) procedure
The list->vector procedure returns a newly created mutable vector initialized to the elements of the
list list in the order of the list.

(list->vector ’(a b c)) ⇒ #(a b c)

(list->immutable-vector list) procedure
The list->vector procedure returns a newly created immutable vector initialized to the elements of
the list list in the order of the list.
(string->vector str) procedure
(string->vector str start)
(string->vector str start end)
The string->vector procedure returns a newly created mutable vector initialized to the elements of
the string str between start and end (i.e. including all characters from index start to index end-1).

(string->vector "ABC") ⇒ #(#\A #\B #\C)

(vector-copy vector) procedure
(vector-copy vector mutable)
(vector-copy vector start)
(vector-copy vector start end)
(vector-copy vector start end mutable)
Returns a newly allocated copy of the elements of the given vector between start and end, but excluding
the element at index end. The elements of the new vector are the same (in the sense of eqv?) as the
elements of the old.

LispKit Vector 210

LispPad Library Reference 2020-12-23

mutable is a boolean argument. If it is set to #f , an immutable copy of vector will be created. The
type of the second argument of vector-copy is used to disambiguate between the second and third
version of the function. An exact integer will always be interpreted as start, a boolean value will always
be interpreted as mutable.

(define a #(1 8 2 8)) ; a may be immutable
(define b (vector-copy a)) ; creates a mutable copy of a
(vector-set! b 0 3) ; b is mutable
b ⇒ #(3 8 2 8)
(define c (vector-copy a #f)) ; creates an immutable copy of a
(vector-set! c 0 3) ⇒ error ; error, since c is immutable
(define d (vector-copy b 1 3))
d ⇒ #(8 2)

(vector-append vector …) procedure
Returns a newly allocated mutable vector whose elements are the concatenation of the elements of the
given vectors.

(vector-append #(a b c) #(d e f)) ⇒ #(a b c d e f)

(vector-concatenate vector xs) procedure
Returns a newly allocated mutable vector whose elements are the concatenation of the elements of the
vectors in xs. xs is a proper list of vectors.

(vector-concatenate '(#(a b c) #(d) #(e f))) ⇒ #(a b c d e f)

(vector-map f vector1 vector2 …) procedure
Constructs a new mutable vector of the shortest size of the vector arguments vector1, vector2, etc. Each
element at index i of the new vector is mapped from the old vectors by (f (vector-ref vector1 i)
(vector-ref vector2 i) ...) . The dynamic order of the application of f is unspecified.

(vector-map + #(1 2 3 4 5) #(10 20 30 40)) ⇒ #(11 22 33 44)

(vector-map/index f vector1 vector2 …) procedure
Constructs a new mutable vector of the shortest size of the vector arguments vector1, vector2, etc. Each
element at index i of the new vector is mapped from the old vectors by (f i (vector-ref vector1 i)
(vector-ref vector2 i) ...) . The dynamic order of the application of f is unspecified.

(vector-map/index (lambda (i x y) (cons i (+ x y))) #(1 2 3) #(10 20 30))
⇒ #((0 . 11) (1 . 22) (2 . 33))

(vector-sort pred vector) procedure
(vector-sort pred vector start)
(vector-sort pred vector start end)
Procedure vector-sort returns a new vector containing the elements of vector in sorted order using
pred as the “less than” predicate. If start and end are given, they indicate the sub-vector that should be
sorted.

(vector-sort < (vector 7 4 9 1 2 8 5))
⇒ #(1 2 4 5 7 8 9)

LispKit Vector 211

LispPad Library Reference 2020-12-23

43.3 Iterating over vectors

(vector-for-each f vector1 vector2 …) procedure
vector-for-each implements a simple vector iterator: it applies f to the corresponding list of parallel
elements from vector1 vector2 … in the range [0, length), where length is the length of the smallest vector
argument passed. In contrast with vector-map , f is reliably applied to each subsequent element, starting
at index 0, in the vectors.

(vector-for-each (lambda (x) (display x) (newline))
#("foo" "bar" "baz" "quux" "zot"))

⇒
foo
bar
baz
quux
zot

(vector-for-each/index f vector1 vector2 …) procedure
vector-for-each/index implements a simple vector iterator: it applies f to the index i and the cor-
responding list of parallel elements from vector1 vector2 … in the range [0, length), where length is the
length of the smallest vector argument passed. The only difference to vector-for-each is that vector-
for-each/index always passes the current index as the first argument of f in addition to the elements
from the vectors vector1 vector2 ….

(vector-for-each/index
(lambda (i x) (display i)(display ": ")(display x)(newline))
#("foo" "bar" "baz" "quux" "zot"))

⇒
0: foo
1: bar
2: baz
3: quux
4: zot

43.4 Managing vector state

(vector-length vector) procedure
Returns the number of elements in vector as an exact integer.
(vector-ref vector k) procedure
The vector-ref procedure returns the contents of element k of vector. It is an error if k is not a valid
index of vector.

(vector-ref ’#(1 1 2 3 5 8 13 21) 5) ⇒ 8
(vector-ref ’#(1 1 2 3 5 8 13 21) (exact (round (* 2 (acos -1))))) ⇒ 13

(vector-set! vector k obj) procedure
The vector-set! procedure stores obj in element k of vector. It is an error if k is not a valid index of
vector.

(let ((vec (vector 0 '(2 2 2 2) "Anna")))
(vector-set! vec 1 '("Sue" "Sue"))
vec)

LispKit Vector 212

LispPad Library Reference 2020-12-23

⇒ #(0 ("Sue" "Sue") "Anna")
(vector-set! '#(0 1 2) 1 "doe")
⇒ error ;; constant/immutable vector

(vector-swap! vector j k) procedure
The vector-swap! procedure swaps the element j of vector with the element k of vector.

43.5 Destructive vector operations

Procedures which operate only on a part of a vector specify the applicable range in terms of an index
interval [start; end[; i.e. the end index is always exclusive.
(vector-copy! to at from) procedure
(vector-copy! to at from start)
(vector-copy! to at from start end)
Copies the elements of vector from between start and end to vector to, starting at at. The order in which
elements are copied is unspecified, except that if the source and destination overlap, copying takes place
as if the source is first copied into a temporary vector and then into the destination. start defaults to 0
and end defaults to the length of vector.
It is an error if at is less than zero or greater than the length of to. It is also an error if (- (vector-length
to) at) is less than (- end start) .

(define a (vector 1 2 3 4 5))
(define b (vector 10 20 30 40 50)) (vector-copy! b 1 a 0 2)
b =⇒ #(10 1 2 40 50)

(vector-fill! vector fill) procedure
(vector-fill! vector fill start)
(vector-fill! vector fill start end)
The vector-fill! procedure stores fill in the elements of vector between start and end. start defaults
to 0 and end defaults to the length of vector.

(define a (vector 1 2 3 4 5))
(vector-fill! a ’smash 2 4)
a ⇒ #(1 2 smash smash 5)

(vector-reverse! vector) procedure
(vector-reverse! vector start)
(vector-reverse! vector start end)
Procedure vector-reverse! destructively reverses the contents of vector between start and end. start
defaults to 0 and end defaults to the length of vector.

(define a (vector 1 2 3 4 5))
(vector-reverse! a)
a ⇒ #(5 4 3 2 1)

(vector-sort! pred vector) procedure
(vector-sort! pred vector start)
(vector-sort! pred vector start end)

LispKit Vector 213

LispPad Library Reference 2020-12-23

Procedure vector-sort! destructively sorts the elements of vector using the “less than” predicate pred
between the indices start and end. Default for start is 0, for end it is the length of the vector.

(define a (vector 7 4 9 1 2 8 5))
(vector-sort! < a)
a ⇒ #(1 2 4 5 7 8 9)

(vector-map! f vector1 vector2 …) procedure
Similar to vector-map which maps the various elements into a new vector via function f, procedure
vector-map! destructively inserts the mapped elements into vector1. The dynamic order in which f gets
applied to the elements is unspecified.

(define a (vector 1 2 3 4))
(vector-map! + a #(10 20 30))
a ⇒ #(11 22 33 4)

(vector-map/index! f vector1 vector2 …) procedure
Similar to vector-map/index which maps the various elements together with their index into a new
vector via function f, procedure vector-map/index! destructively inserts the mapped elements into
vector1. The dynamic order in which f gets applied to the elements is unspecified.

(define a (vector 1 2 3 4))
(vector-map/index! (lambda (i x y) (cons i (+ x y))) a #(10 20 30))
a ⇒ #((0 . 11) (1 . 22) (2 . 33) 4)

43.6 Converting vectors

(vector->list vector) procedure
(vector->list vector start)
(vector->list vector start end)
The vector->list procedure returns a newly allocated list of the objects contained in the elements of
vector between start and end in the same order line in vector.

(vector->list ’#(dah dah didah)) ⇒ (dah dah didah)
(vector->list ’#(dah dah didah) 1 2) ⇒ (dah)

(vector->string vector) procedure
(vector->string vector start)
(vector->string vector start end)
The vector->string procedure returns a newly allocated string of the objects contained in the elements
of vector between start and end. This procedure preserves the order of the characters. It is an error if any
element of vector between start and end is not a character.

(vector->string #(#\1 #\2 #\3) ⇒ "123"

LispKit Vector 214

44 LispPad AppleScript

Library (lisppad applescript) exports procedures for invoking Automator workflows and AppleScript
scripts and subroutines from Scheme code. Since LispPad runs in a sandbox and scripts and subroutines
are executed outside of the sandbox, this will enable direct integrations with other macOS applications
supporting AppleScript or Automator such as Mail, Safari, Music, etc.

44.1 Script authorization

The script authorization mechanism of macOS is unfortunately a bit cumbersome, requiring the installa-
tion of the Automator and AppleScript files in a particular directory specifically for LispPad. (system-
directory 'application-scripts) returns a list of directories in which scripts are accessible by Lisp-
Pad. This includes typically the directory:

/Users/username/Library/Application Scripts/net.objecthub.LispPad

This directory can be opened on macOS’s Finder via:

(open-file (car (system-directory 'application-scripts)))

Scripts need to be copied to this directory.

44.2 Script integration

As an example, the following script defines two AppleScript subroutines safariFrontURL and setSa-
fariFrontURL . The AppleScript code also displays an error if the script is run overall as its only role is
to make subroutines accessible to LispPad. Such scripts are written using Apple’s Script Editor application
and need to be stored in a directory accesible by LispPad as explained above.

on safariFrontURL()
tell application "Safari" to return URL of front document

end safariFrontURL

on setSafariFrontURL(newUrl)
tell application "Safari" to set URL of front document to newUrl

end setSafariFrontURL

on run
display alert "Do not run this script. It provides AppleScript sub-routines to LispPad."

end run

Assuming that the script was saved in a file at path:

215

LispPad Library Reference 2020-12-23

/Users/username/Library/Application Scripts/net.objecthub.LispPad/AccessSafari.scpt

it is now possible to load the script via procedure applescript into an AppleScript object from which
the various subroutines can be accessed:

(import (lisppad applescript))
(define script (applescript "AccessSafari.scpt"))

It is possible to run the whole script via procedure execute-applescript :

(execute-applescript script)

The execution of scripts is always synchronous, so the procedure call to execute-applescript termi-
nates only when the execution of the script terminates. When executed, the script above will always
display an alert since it was not made to be executed.
It is not possible to pass parameters via execute-applescript or receive results. This can be achieved
by calling subroutines with procedure apply-applescript-proc . The following code will invoke sub-
routine safariFrontURL from the script above and return the URL of the current frontmost Safari
window:

(apply-applescript-proc script "safariFrontURL" '())

The third argument of procedure apply-applescript-proc is a list of parameters for the subroutine.
The following code will set the URL of the frontmost Safari window to “http://lisppad.objecthub.net”.

(apply-applescript-proc script "setSafariFrontURL" '("http://lisppad.objecthub.net"))

Library (lisppad applescript) provides a means to quickly create Scheme functions matching Apple-
Script subroutines. This is shown in the following code:

(define safari-front-url (applescript-proc script "safariFrontURL"))
(define set-safari-front-url! (applescript-proc script "setSafariFrontURL"))
(display (safari-front-url))
(newline)
(set-safari-front-url! "http://lisppad.objecthub.net")

44.3 Exchanging data

This is how library (lisppad applescript) is mapping data types when exchanging data between
Scheme and AppleScript:

Scheme datatype AppleScript datatype
void null
boolean boolean
fixnum int32
flonum double
proper list list
string unicode text

date-time date

If data of other data types is attempted to be exchanged, it might lead to failures or the data might get
dropped or omitted.

LispPad AppleScript 216

LispPad Library Reference 2020-12-23

44.4 API

(applescript? obj) procedure
Returns #t if obj is an AppleScript object, #f otherwise.
(applescript path) procedure
Loads and compiles the AppleScript file at path returning an AppleScript object that can be used to execute
the script or subroutines defined by the script.
(applescript-path script) procedure
Returns the file path from which the AppleScript object script was created.
(execute-applescript script) procedure
Executes the given AppleScript script. The execution is synchronous and execute-applescript will
only return once script has been executed.
(apply-applescript-proc script name args) procedure
Invokes the subroutine name defined by AppleScript script with the arguments args. name is a string,
script is an AppleScript object, and args is a list of arguments passed on to the subroutine. apply-
applescript-proc returns the result returned by the subroutine, i.e. the execution of the subroutine is
synchronous.
(applescript-proc script name) procedure
Returns a Scheme procedure for subroutine name defined in AppleScript script. name is a string and script
is an AppleScript object. applescript-proc is defined in the following way:

(define (applescript-proc script name)
(lambda args

(apply apply-applescript-proc script name args)))

LispPad AppleScript 217

45 LispPad Speech

Library (lisppad speech) provides a speech synthesis API which parses text and converts it into audible
speech. The conversion is based on factors like the language, the voice, and a range of parameters which
are all aggregated by speaker objects.

45.1 Speech synthesis

(speak text) procedure
(speak text speaker)
Speaks the given string text using with the speaker object providing all speech synthesis parameters. If
speaker is not provided, the value of parameter object current-speaker is used.
(phonemes text) procedure
(phonemes text speaker)
Converts the given natural language string text into a string of phonemes using the given speaker. If
speaker is not provided, the value of parameter object current-speaker is used.
Speakers can be configured to speak phonemes instead of natural language via procedure speaker-
interpret-phonemes! .

45.2 Speakers

A speaker is an object defining speech synthesis parameters. There is a current speaker which is used by
default, unless a speaker is explicitly specified for the various procedures that require a speaker parame-
ter.
A speaker object has the following components:
• an immutable voice,
• a mutable speaking rate,
• a mutable speaking volume,
• a flag determining whether the speaker interprets text or phonemes,
• a flag determining how numbers are interpreted, as well as
• a speaking pitch.

current-speaker parameter object
Defines the current speaker, which is used as a default by all functions for which the speaker argument is
optional. If there is no current speaker, this parameter is set to #f .
(speaker? obj) procedure
Returns #t if obj is a speaker object; otherwise #f is returned.
(make-speaker) procedure
(make-speaker voice)

218

LispPad Library Reference 2020-12-23

Returns a new speaker for the given voice. If voice is not provided, a default voice, specified at the operating
system level, is being used. Speakers are stateful objects which can be configured with a number of
procedures: set-speaker-rate! , set-speaker-volume! , set-speaker-interpret-phonemes! ,
set-speaker-interpret-numbers! , and set-speaker-pitch! .
(speaker-voice) procedure
(speaker-voice speaker)
Returns the voice of speaker. If speaker is not provided, the parameter object current-speaker is used.
(speaker-rate) procedure
(speaker-rate speaker)
Returns the speaking rate of speaker. If speaker is not provided, the parameter object current-speaker
is used.
(set-speaker-rate! rate) procedure
(set-speaker-rate! rate speaker)
Sets the speaking rate of speaker to number rate. If speaker is not provided, the parameter object current-
speaker is used.
(speaker-volume) procedure
(speaker-volume speaker)
Returns the volume of speaker as a flonum ranging from 0.0 to 1.0. If speaker is not provided, the param-
eter object current-speaker is used.
(set-speaker-volume! volume) procedure
(set-speaker-volume! volume speaker)
Sets the volume of speaker to number volume which is a flonum between 0.0 and 1.0. If speaker is not
provided, the parameter object current-speaker is used.
(speaker-interpret-phonemes) procedure
(speaker-interpret-phonemes speaker)
Returns #t if speaker interprets phonemes instead of natural language text. If speaker is not provided,
the parameter object current-speaker is used.
(set-speaker-interpret-phonemes! phoneme?) procedure
(set-speaker-interpret-phonemes! phoneme? speaker)
If boolean argument phoneme? is #f , speaker is configured to interpret natural language. If phoneme?
is set to any other value, the speaker is interpreting phonemes instead. If speaker is not provided, the
parameter object current-speaker is used.
(speaker-interpret-numbers) procedure
(speaker-interpret-numbers speaker)
Returns #t if speaker interprets numbers as a natural language speaker would do (“100” is spoken
as “hundred”). If it returns #f , speaker decomposes numbers into a sequence of digits and speaks
them individually (“100” is spoken as “one zero zero”). If speaker is not provided, the parameter object
current-speaker is used.
(set-speaker-interpret-numbers! natural?) procedure
(set-speaker-interpret-numbers! natural? speaker)
Sets the number interpretation of speaker to boolean natural?. If natural? is #t speaker will interpret
numbers as a natural language speaker would do (“100” is spoken as “hundred”). If natural? is #f ,
speaker decomposes numbers into a sequence of digits and speaks them individually (“100” is spoken as
“one zero zero”). If speaker is not provided, the parameter object current-speaker is used.

LispPad Speech 219

LispPad Library Reference 2020-12-23

(speaker-pitch) procedure
(speaker-pitch speaker)
Returns the pitch of speaker as a pair of two flonums: the car is the base of the pitch, and the cdr is the
modulation of the pitch. If speaker is not provided, the parameter object current-speaker is used.
(set-speaker-pitch! pitch) procedure
(set-speaker-pitch! pitch speaker)
Sets the pitch of speaker to the pair of flonums pitch whose car is the base of the pitch, and the cdr is the
modulation of the pitch. If speaker is not provided, the parameter object current-speaker is used.

45.3 Voices

Voices are provided by the operating system and library (lispkit speech) does not have
an explicit representation as objects. Symbols are used as identifiers for voices. For example,
com.apple.speech.synthesis.voice.Alex refers to the default US voice.
A voice has the following characteristics:
• Name (string)
• Age (fixnum)
• Gender (male or female)
• Locale (symbol, e.g. en_US)

Library (lispkit system) provides means to handle locales, including language and country codes.
(voice) procedure
(voice name)
(voice id)
Returns a symbol identifying the voice specified by the arguments of voice . If no argument is provided,
an indentifier for the default voice is returned. If a name string is provided, then an identifier for a voice
whose name is name is returned, or #f if no such voice exists. If an id symbol is provided, then an
identifier for a voice whose identifier matches id is returned, or #f if no such voice exists.
(available-voices) procedure
(available-voices lang)
(available-voices lang gender)
Returns a list of symbols identifying voices matching the given language filter lang and gender filter gender.
Both lang and gender are symbols. lang should either be a language or locale identifier. It can also be set
to #f if only a gender filter is needed. gender should either be symbol male or female .

(available-voices 'en)
⇒ (com.apple.speech.synthesis.voice.Alex com.apple.speech.synthesis.voice.daniel

com.apple.speech.synthesis.voice.fiona com.apple.speech.synthesis.voice.Fred
com.apple.speech.synthesis.voice.karen com.apple.speech.synthesis.voice.moira
com.apple.speech.synthesis.voice.rishi com.apple.speech.synthesis.voice.samantha
com.apple.speech.synthesis.voice.tessa com.apple.speech.synthesis.voice.veena)

↪

↪

↪

↪

(available-voices (locale "en" "GB"))
⇒ (com.apple.speech.synthesis.voice.daniel)

(available-voice? obj) procedure
Returns #t if obj is a symbol identifying an available voice, otherwise #f is returned. This procedure
fails if obj is neither a symbol nor the value #f .

LispPad Speech 220

LispPad Library Reference 2020-12-23

(voice-name voice) procedure
Returns the name of the voice identified by symbol voice.
(voice-age voice) procedure
Returns the age of the voice identified by symbol voice.
(voice-gender voice) procedure
Returns the gender of the voice identified by symbol voice.
(voice-locale voice) procedure
Returns the locale of the voice identified by symbol voice.

LispPad Speech 221

46 LispPad System

Library (lisppad system) defines an API for scripting the LispPad user interface. This library is specific
to LispPad and is not bundled with LispKit.
Library (lisppad system) provides functionality primarily for managing LispPad windows: new win-
dows can be created, properties of existing windows can be changed, and the content of existing windows
can be accessed and modified. There is also support for making use of simple dialogs, e.g. for displaying
messages, asking the user to make a choice, or for letting the user choose a file or directory in a load or
save panel.

46.1 Windows

(lisppad system) does not provide a data structure for modeling references to LispPad windows. In-
stead, it uses integer ids as references. Two different types of windows can be managed:
• Edit windows are used for editing text, and
• Graphics windows are used for displaying drawings created via library (lispkit draw) .

Other types of windows are currently not accessible via library (lisppad system) .
(open-document path) procedure
Opens a document stored in a file at path path. Only documents that LispPad is able to open are sup-
ported.
(edit-windows) procedure
Returns an association list containing all open edit windows. Each open window has an entry of the form
(window id . window title). For example, the result of invoking (edit-windows) could look like this:
((106102873393392 . "LispKit Libraries.md") (106377751319520 . "Untitled")) .
(graphics-windows) procedure
Returns an association list containing all open graphics windows. Each open window has an entry of the
form (window id . window title). For example, the result of invoking (graphics-windows) could look
like this: ((106102873393789 . "My Drawing") (106377751899571 . "Untitled Drawing")) .
(window-name win) procedure
Returns the name of the window with window id win.
(window-position win) procedure
Returns the position of the window with window id win. The position of a window is the upper left corner
of its title bar represented as a point.
(set-window-position! win pos) procedure
Sets the position of the window with window id win to point pos. The position of a window is the upper
left corner of its title bar.
(window-size win) procedure
Returns the size of the window with window id win. The size of a window consists of its width and height
represented as a size.

222

LispPad Library Reference 2020-12-23

(set-window-size! win size) procedure
Sets the size of the window with window id win to size size. The size of a window consists of its width
and height.
(close-window win) procedure
Closes the window with window id win.

46.2 Edit Windows

(make-edit-window str pos size) procedure
Creates a new edit window containing str as its textual content. The window’s initial position is pos and
its size is size.
(edit-window-text win) procedure
Returns the textual content of the edit window with the given window id win.
(insert-edit-window-text! win str) procedure
(insert-edit-window-text! win str start)
(insert-edit-window-text! win str start end)
Inserts a string str replacing text between start and end for the edit window with window id win. It start is
not provided, start is considered to be 0 (i.e. the text is inserted at the beginning). If end is not provided,
it is considered to be the length of the text contained in the edit window win.
(edit-window-text-length win) procedure
Returns the length of the text contained in the edit window with window id win.

46.3 Graphics Windows

(make-graphics-window drawing dsize) procedure
(make-graphics-window drawing dsize title)
(make-graphics-window drawing dsize title pos)
(make-graphics-window drawing dsize title pos size)
Creates a new graphics window for drawing drawing. dsize refers to the size of the drawing. title is the
window title of the new window, pos is its initial position, and size corresponds to the initial size of the
graphics window.
(use-graphics-window drawing dsize title) procedure
(use-graphics-window drawing dsize title pos)
(use-graphics-window drawing dsize title pos size)
(use-graphics-window drawing dsize title pos size ignore)
This is almost equivalent to function make-graphics-window . The main difference consists in use-
graphics-window reusing an existing graphics window if there is one open with the given title. If there
is no window whose title matches title, a new graphics window will be created. If a window exists already
and boolean argument ignore is set to #t , the existing window’s position and size will not be updated.
(update-graphics-window win) procedure
This function forces the graphics window with window id win to redraw its content. Currently, graphics
windows are only guaranteed to redraw automatically after executing a command in the session window
which was used to create the drawing object.
(graphics-window-drawing win) procedure
Returns the drawing associated with the graphics window with window id win.

LispPad System 223

LispPad Library Reference 2020-12-23

(set-graphics-window-drawing! win drawing) procedure
Sets the drawing associated with the graphics window with window id win to drawing.
(graphics-window-label win) procedure
Each graphics window has a label at the bottom of the window. This label can be arbitrarily modified, and
e.g. used as a caption. graphics-window-label returns the label of the graphics window with window
id win.
(set-graphics-window-label! win str) procedure
Each graphics window has a label at the bottom of the window. The label of graphics window win can be
set via function set-graphics-window-label! to string str.
(drawing-size win) procedure
Returns the size of the drawing associated with graphics window win. Please note that this is not the
window size of win.
(set-drawing-size! win size) procedure
Sets the size of the drawing associated with graphics window win to size. Please note that this is not
setting the window size of win.

46.4 Utilities

(screen-size) procedure
(screen-size win)
Returns the screen size of the screen on which window win is displayed. If argument win is omitted,
function screen-size will return the size of the main screen.
(show-message-panel title) procedure
(show-message-panel title str)
(show-message-panel title str button)
Shows a message panel within the current session window. title refers to the panel title, str is the message
to be displayed_, and button is the label of the confirmation button.
(show-choice-panel title str) procedure
(show-choice-panel title str yes)
(show-choice-panel title str yes no)
Shows a choice panel within the current session window. title refers to the panel title, str is the question
to be asked, and yes and no refer to the two labels of the buttons for users to choose. The function returns
#t if the user clicked on the “yes button”.
(show-load-panel prompt) procedure
(show-load-panel prompt folders)
(show-load-panel prompt folders filetypes)
Displays a load panel within the current session window together with the given prompt message. folders
is a boolean argument; it should be set to #t if the user is required to select a folder. filetypes is a list of
suffixes of selectable file types.
(show-save-panel prompt) procedure
(show-save-panel prompt filetypes)
Displays a save panel within the current session window together with the given promptmessage. filetypes
is a list of suffixes of selectable file types.

LispPad System 224

LispPad Library Reference 2020-12-23

(session-id) procedure
Returns a unique fixnum (within LispPad) identifying the session.
(session-name) procedure
Returns the name of the LispPad session which executes this function.
(session-display obj) procedure
(session-display obj bold?)
(session-display obj bold? col)
Displays value obj in the current session in color col and in bold if bold? is true.
(session-write obj) procedure
(session-write obj bold?)
(session-write obj bold? col)
Writes the value obj into the current session in color col and in bold if bold? is true.
(session-log time sev str) procedure
(session-log time sev str tag)
Logs the message str with severity sev at the given timestamp time (a double value) in the session log. sev
is one of the following symbols: debug , info , warn , error , or fatal .
(project-directory) procedure
Returns the path to the project directory as defined in the preferences of LispPad. project-directory
returns #f if no project directory was explicitly set.
(dark-mode?) procedure
Return #t if the session window of the LispPad session which executes this function is rendered in dark
mode; returns #f otherwise.

LispPad System 225

47 LispPad Turtle

This is a library implementing a simple graphics window for displaying turtle graphics. The library sup-
ports one graphics window per LispPad session which gets initialized by invoking init-turtle . init-
turtle will create a new turtle and display its drawing on a graphics window. If there is already an
existing graphics window with the given title, it will be reused.
Once init-turtle was called, the following functions can be used to move the turtle across the plane:
• (pen-up) : Lifts the turtle
• (pen-down) : Drops the turtle
• (pen-color color) : Sets the current color of the turtle
• (pen-size size) : Sets the size of the turtle pen
• (home) : Moves the turtle back to the origin
• (move x y) : Moves the turtle to position (x, y)
• (heading angle) : Sets the angle of the turtle (in radians)
• (turn angle) : Turns the turtle by the given angle (in radians)
• (left angle) : Turn left by the given angle (in radians)
• (right angle) : Turn right by the given angle (in radians)
• (forward distance) : Moves forward by distance units drawing a line if the pen is down
• (backward distance) : Moves backward by distance units drawing a line if the pen is down

This library defines a simplified, interactive version of the API provided by library (lispkit draw tur-
tle) .
(init-turtle) procedure
(init-turtle scale)
(init-turtle scale title)
Initializes a new turtle and displays its drawing in a graphics window. init-turtle gets two optional
arguments: scale and title . scale is a scaling factor which determines the size of the turtle
drawing. title is a string that defines the window name of the turtle graphics. It also acts as the
identify of the turtle graphics window; i.e. it won’t be possible to have two sessions with the same name
but a different graphics window.
(close-turtle-window) procedure
Closes the turtle window and resets the turtle library.
(turtle-drawing) procedure
Returns the drawing associated with the current turtle.
(pen-up) procedure
Lifts the turtle from the plane. Subsequent forward and backward operations don’t lead to lines being
drawn. Only the current coordinates are getting updated.
(pen-down) procedure
Drops the turtle onto the plane. Subsequent forward and backward operations will lead to lines being
drawn.
(pen-color color) procedure
Sets the drawing color of the turtle to color. color is a color object as defined by library (lispkit draw)
.

226

LispPad Library Reference 2020-12-23

(pen-size size) procedure
Sets the pen size of the turtle to size. The pen size corresponds to the width of lines drawn by forward
and backward .
(home) procedure
Moves the turtle to its home position.
(move x y) procedure
Moves the turtle to the position described by the coordinates x and y.
(heading angle) procedure
Sets the heading of the turtle to angle. angle is expressed in terms of degrees.
(turn angle) procedure
Adjusts the heading of the turtle by angle degrees.
(right angle) procedure
Adjusts the heading of the turtle by angle degrees.
(left angle) procedure
Adjusts the heading of the turtle by -angle degrees.
(forward distance) procedure
Moves the turtle forward by distance units drawing a line if the pen is down.
(backward distance) procedure
Moves the turtle backward by distance units drawing a line if the pen is down.

LispPad Turtle 227

48 SRFI Libraries

LispPad supports a broad range of libraries standardized and published via the SRFI process. The following
libraries come pre-packaged with LispPad:
• SRFI 1: List Library
• SRFI 2: AND-LET* - an AND with local bindings, a guarded LET* special form
• SRFI 6: Basic String Ports
• SRFI 8: receive - Binding to multiple values
• SRFI 9: Defining Record Types
• SRFI 11: Syntax for receiving multiple values
• SRFI 14: Character-set library
• SRFI 16: Syntax for procedures of variable arity
• SRFI 17: Generalized set!
• SRFI 19: Time Data Types and Procedures
• SRFI 23: Error reporting mechanism
• SRFI 26: Notation for Specializing Parameters without Currying
• SRFI 27: Sources of Random Bits
• SRFI 28: Basic Format Strings
• SRFI 31: A special form rec for recursive evaluation
• SRFI 33: Integer Bitwise-operation Library
• SRFI 34: Exception Handling for Programs
• SRFI 35: Conditions
• SRFI 39: Parameter objects
• SRFI 41: Streams
• SRFI 46: Basic Syntax-rules Extensions
• SRFI 48: Intermediate Format Strings
• SRFI 51: Handling rest list
• SRFI 54: Formatting
• SRFI 55: require-extension
• SRFI 63: Homogeneous and Heterogeneous Arrays
• SRFI 64: A Scheme API for test suites
• SRFI 69: Basic hash tables
• SRFI 87: => in case clauses
• SRFI 95: Sorting and Merging
• SRFI 98: An interface to access environment variables
• SRFI 101: Purely Functional Random-Access Pairs and Lists
• SRFI 111: Boxes
• SRFI 112: Environment inquiry
• SRFI 113: Sets and bags
• SRFI 121: Generators
• SRFI 125: Intermediate hash tables
• SRFI 128: Comparators
• SRFI 129: Titlecase procedures
• SRFI 132: Sort Libraries
• SRFI 133: Vector Library

228

https://srfi.schemers.org
https://srfi.schemers.org/srfi-1/srfi-1.html
https://srfi.schemers.org/srfi-2/srfi-2.html
https://srfi.schemers.org/srfi-6/srfi-6.html
https://srfi.schemers.org/srfi-8/srfi-8.html
https://srfi.schemers.org/srfi-9/srfi-9.html
https://srfi.schemers.org/srfi-11/srfi-11.html
https://srfi.schemers.org/srfi-14/srfi-14.html
https://srfi.schemers.org/srfi-16/srfi-16.html
https://srfi.schemers.org/srfi-17/srfi-17.html
https://srfi.schemers.org/srfi-19/srfi-19.html
https://srfi.schemers.org/srfi-23/srfi-23.html
https://srfi.schemers.org/srfi-26/srfi-26.html
https://srfi.schemers.org/srfi-27/srfi-27.html
https://srfi.schemers.org/srfi-28/srfi-28.html
https://srfi.schemers.org/srfi-31/srfi-31.html
https://srfi.schemers.org/srfi-33/srfi-33.html
https://srfi.schemers.org/srfi-34/srfi-34.html
https://srfi.schemers.org/srfi-35/srfi-35.html
https://srfi.schemers.org/srfi-39/srfi-39.html
https://srfi.schemers.org/srfi-41/srfi-41.html
https://srfi.schemers.org/srfi-46/srfi-46.html
https://srfi.schemers.org/srfi-48/srfi-48.html
https://srfi.schemers.org/srfi-51/srfi-51.html
https://srfi.schemers.org/srfi-54/srfi-54.html
https://srfi.schemers.org/srfi-55/srfi-55.html
https://srfi.schemers.org/srfi-63/srfi-63.html
https://srfi.schemers.org/srfi-64/srfi-64.html
https://srfi.schemers.org/srfi-69/srfi-69.html
https://srfi.schemers.org/srfi-87/srfi-87.html
https://srfi.schemers.org/srfi-95/srfi-95.html
https://srfi.schemers.org/srfi-98/srfi-98.html
https://srfi.schemers.org/srfi-101/srfi-101.html
https://srfi.schemers.org/srfi-111/srfi-111.html
https://srfi.schemers.org/srfi-112/srfi-112.html
https://srfi.schemers.org/srfi-113/srfi-113.html
https://srfi.schemers.org/srfi-121/srfi-121.html
https://srfi.schemers.org/srfi-125/srfi-125.html
https://srfi.schemers.org/srfi-128/srfi-128.html
https://srfi.schemers.org/srfi-129/srfi-129.html
https://srfi.schemers.org/srfi-132/srfi-132.html
https://srfi.schemers.org/srfi-133/srfi-133.html

LispPad Library Reference 2020-12-23

• SRFI 134: Immutable Deques
• SRFI 135: Immutable Texts
• SRFI 137: Minimal Unique Types
• SRFI 142: Bitwise Operations
• SRFI 145: Assumptions
• SRFI 146: Mappings
• SRFI 151: Bitwise Operations
• SRFI 152: String Library
• SRFI 158: Generators and Accumulators
• SRFI 161: Unifiable Boxes
• SRFI 162: Comparators sublibrary
• SRFI 165: The Environment Monad
• SRFI 167: Ordered Key Value Store
• SRFI 173: Hooks
• SRFI 174: POSIX Timespecs
• SRFI 175: ASCII Character Library
• SRFI 177: Portable keyword arguments
• SRFI 180: JSON
• SRFI 194: Random data generators
• SRFI 195: Multiple-value boxes
• SRFI 196: Range Objects
• SRFI 204: Wright-Cartwright-Shinn Pattern Matcher
• SRFI 209: Enums and Enum Sets
• SRFI 210: Procedures and Syntax for Multiple Values

SRFI Libraries 229

https://srfi.schemers.org/srfi-134/srfi-134.html
https://srfi.schemers.org/srfi-135/srfi-135.html
https://srfi.schemers.org/srfi-137/srfi-137.html
https://srfi.schemers.org/srfi-142/srfi-142.html
https://srfi.schemers.org/srfi-145/srfi-145.html
https://srfi.schemers.org/srfi-146/srfi-146.html
https://srfi.schemers.org/srfi-151/srfi-151.html
https://srfi.schemers.org/srfi-152/srfi-152.html
https://srfi.schemers.org/srfi-158/srfi-158.html
https://srfi.schemers.org/srfi-161/srfi-161.html
https://srfi.schemers.org/srfi-162/srfi-162.html
https://srfi.schemers.org/srfi-165/srfi-165.html
https://srfi.schemers.org/srfi-167/srfi-167.html
https://srfi.schemers.org/srfi-173/srfi-173.html
https://srfi.schemers.org/srfi-174/srfi-174.html
https://srfi.schemers.org/srfi-175/srfi-175.html
https://srfi.schemers.org/srfi-177/srfi-177.html
https://srfi.schemers.org/srfi-180/srfi-180.html
https://srfi.schemers.org/srfi-194/srfi-194.html
https://srfi.schemers.org/srfi-195/srfi-195.html
https://srfi.schemers.org/srfi-196/srfi-196.html
https://srfi.schemers.org/srfi-204/srfi-204.html
https://srfi.schemers.org/srfi-209/srfi-209.html
https://srfi.schemers.org/srfi-210/srfi-210.html

	Introduction
	Overview
	Further reading
	Acknowledgments

	LispKit Base
	LispKit Box
	Boxes
	Mutable pairs

	LispKit Bytevector
	Basic
	Advanced
	Input/Output

	LispKit Char-Set
	Constants
	Predicates
	Constructors
	Querying character sets
	Character set algebra
	Mutating character sets
	Iterating over character sets

	LispKit Char
	Predicates
	Transforming characters
	Converting characters

	LispKit Combinator
	LispKit Comparator
	Comparator objects
	Predicates
	Constructors
	Default comparators
	Accessors and invokers
	Comparison predicates
	Syntax

	LispKit Control
	Sequencing
	Conditionals
	Local bindings
	Local syntax bindings
	Iteration

	LispKit Core
	Basic primitives
	Definition primitives
	Importing definitions
	Delayed execution
	Symbols
	Booleans
	Conditional and inclusion compilation
	Multiple values
	Environments
	Syntax errors
	Utilities

	LispKit CSV
	CSV ports
	Line-level API
	Record-level API

	LispKit Datatype
	Usage
	API

	LispKit Date-Time
	Time zones
	Time stamps
	Date-times
	Date-time predicates
	Date-time operations

	LispKit Debug
	Timing execution
	Tracing procedure calls
	Macro expansion
	Disassembling code
	Execution environment

	LispKit Disjoint-Set
	LispKit Draw
	Drawings
	Shapes
	Images
	Transformations
	Colors
	Fonts
	Points
	Size
	Rects

	LispKit Draw Turtle
	LispKit Dynamic
	Dynamic bindings
	Continuations
	Exceptions
	Exiting

	LispKit Enum
	LispKit Gvector
	Predicates
	Constructors
	Iterating over vector elements
	Managing vector state
	Destructive growable vector operations
	Converting growable vectors

	LispKit Hashtable
	Constructors
	Type tests
	Inspection
	Hash functions
	Procedures
	Composition

	LispKit Heap
	LispKit Iterate
	LispKit List
	Basic constructors and procedures
	Predicates
	Composing and transforming lists
	Finding and extracting elements

	LispKit Log
	Log severities
	Log formatters
	Logger objects
	Logging procedures
	Logging syntax

	LispKit Markdown
	Data Model
	Blocks
	Inline Text

	Creating Markdown documents
	Processing Markdown documents
	API

	LispKit Match
	Simple patterns
	Composite patterns
	Advanced patterns
	Pattern grammar
	Matching API

	LispKit Math
	Numerical constants
	Predicates
	Exactness and rounding
	Operations
	Division and remainder
	Fractional numbers
	Complex numbers
	String representation
	Bitwise operations
	Fixnum operations
	Floating-point operations

	LispKit Object
	Introduction
	Generic procedures
	Objects
	Inheritance
	Classes

	Procedural object interface
	Declarative object interface
	Procedural class interface
	Instance methods
	Class methods

	Declarative class interface

	LispKit Port
	Default ports
	Predicates
	General ports
	File ports
	String ports
	Bytevector ports
	URL ports
	Asset ports
	Reading from ports
	Writing to ports

	LispKit Queue
	LispKit Record
	Declarative API
	Procedural API

	LispKit Regexp
	Regular expressions
	Meta-characters

	Regular expression operators
	Template Matching
	Flag options

	API

	LispKit Set
	Constructors
	Inspection
	Predicates
	Procedures
	Mutators

	LispKit SQLite
	Introduction
	API
	SQLite version retrieval
	Database options
	Database objects
	SQL statements

	LispKit Stack
	LispKit Stream
	Benefits of using streams
	Stream abstractions
	Stream API

	LispKit String
	Basic constructors and procedures
	Predicates
	Composing and extracting strings
	Manipulating strings
	Iterating over strings
	Converting strings
	Input/Output

	LispKit System
	Source files
	File paths
	File operations
	Network operations
	Time operations
	Locales
	Execution environment

	LispKit System OS
	LispKit Test
	Test groups
	Defining test groups
	Comparing actual with expected values
	Test utilities

	LispKit Type
	Usage of the procedural API
	Usage of the declarative API
	API

	LispKit Vector
	Predicates
	Constructors
	Iterating over vectors
	Managing vector state
	Destructive vector operations
	Converting vectors

	LispPad AppleScript
	Script authorization
	Script integration
	Exchanging data
	API

	LispPad Speech
	Speech synthesis
	Speakers
	Voices

	LispPad System
	Windows
	Edit Windows
	Graphics Windows
	Utilities

	LispPad Turtle
	SRFI Libraries

