
Scalable Component Abstractions

Martin Odersky Matthias Zenger
EPFL Google Switzerland GmbH

CH-1015 Lausanne Limmatquai 122, CH-8001 Zürich

Abstract

We identify three programming language abstractions for
the construction of reusable components: abstract type
members, explicit selftypes, and symmetric mixin compo-
sition. Together, these abstractions enable us to transform
an arbitrary assembly of static program parts with hard ref-
erences between them into a system of reusable components.
The transformation maintains the structure of the original
system. We demonstrate this approach in two case studies,
a subject/observer framework and a compiler front-end.

1 Introduction

True component systems have been an elusive goal of the
software industry. Ideally, software should be assembled
from libraries of pre-written components, just as hardware
is assembled from pre-fabricated chips or pre-defined inte-
grated circuits. In reality, large parts of software applica-
tions are often written “from scratch,” so that software pro-
duction is still more a craft than an industry.

Components in this sense are simply program parts
which are used in some way by larger parts or whole ap-
plications. Components can take many forms; they can be
modules, classes, libraries, frameworks, processes, or web
services. Their size might range from a couple of lines to
hundreds of thousands of lines. They might be linked with
other components by a variety of mechanisms, such as ag-
gregation, parameterization, inheritance, remote invocation,
or message passing.

An important requirement for components is that they
are reusable; that is, that they should be applicable in con-
texts other than the one in which they have been developed.
Generally, one requires that component reuse should be pos-
sible without modifiying a component’s source code. Such
modifications are undesirable because they have a tendency
to create versioning problems. For instance, a version con-
flict might arise between an adaptation of a component in
some client application and a newer version of the origi-
nal component. Often, one goes even further in requiring
that components are distributed and deployed only in bi-
nary form [Szy98].

To enable safe reuse, a component needs to have inter-
faces for provided as well as for required services through
which interactions with other components occur. To en-
able flexible reuse in new contexts, a component should also
minimize “hard links” to specific other components which it
requires for its functioning.

We argue that, at least to some extent, the lack of
progress in component software is due to shortcomings in the
programming languages used to define and integrate compo-
nents. Most existing languages offer only limited support for
component abstraction and composition. This holds in par-
ticular for statically typed languages such as Java [GJSB00]
and C# [ECM02] in which much of today’s component soft-
ware is written. While these languages offer some support
for attaching interfaces describing the provided services of a
component, they lack the capability to abstract over the ser-
vices that are required. Consequently, most software mod-
ules are written with hard references to required modules.
It is then not possible to reuse a module in a new context
that refines or refactors some of those required modules.

Ideally, it should be possible to lift an arbitrary system of
software components with static data and hard references,
resulting in a system with the same structure, but with nei-
ther static data nor hard references. The result of such a
lifting should create components that are first-class values.
We have identified three programming language abstractions
that enable such liftings.

Abstract type members provide a flexible way to abstract
over concrete types of components. Abstract types
can hide information about internals of a component,
similar to their use in SML signatures. In an object-
oriented framework where classes can be extended
by inheritance, they may also be used as a flexible
means of parameterization (often called family poly-
morphism [Ern01]).

Selftype annotations allow one to attach a programmer-
defined type to this. This turns out to be a convenient
way to express required services of a component at the
level where it connects with other components.

Symmetric mixin composition provides a flexible way to
compose components and component types. Unlike
functor applications, mixin compositions can establish
recursive references between cooperating components.
No explicit wiring between provided and required ser-
vices is needed. Services are modelled as component
members. Provided and required services are matched
by name and therefore do not have to be associated
explicitly by hand.

All three abstractions have their theoretical foundation in
the νObj calculus [OCRZ03]. They have been defined and

implemented in the programming language Scala. We have
used them extensively in a component-oriented rewrite of
the Scala compiler frontend, with encouraging results.

The three abstractions are scalable, in the sense that they
can describe very small as well as very large components.
Scalability is ensured by the principle that the result of a
composition should have the same fundamental properties
as its constituents. In our case, components correspond to
classes, and the result of a component composition is al-
ways a class again, which might have abstract members and
a selftype annotation, and which might be composed with
other classes using symmetric mixin composition. Classes on
every level can create objects (also called “runtime compo-
nents”) which are first-class values, and therefore are freely
configurable.

Related Work

The concept of functor [Mac84, HL94, Ler94] in the mod-
ule systems of SML [HL94] and OCaml [Ler94], provides a
way to abstract over required services in a statically type-
checked setting. It represents an important step towards
true component software. However, functors still pose se-
vere restrictions when it comes to structuring components.
Recursive references between separately compiled compo-
nents are not allowed and inheritance with dynamic binding
is not available.

ML modules, as well as other component for-
malisms [ACN02, MFH01, SC00, Zen04a] introduce sepa-
rate layers that distinguish between components and their
constituents. This approach might have some advantages
in that each formalism can be tailored to its specific needs,
and that programmers receive good syntactic guidance. But
it limits scalability of component systems. After all, what
is a complicated system on one level might be a simple el-
ement on the next level of scale. For instance, the Scala
compiler itself is certainly a non-trivial system, but it is
treated simply as an object when used as a plugin for the
Eclipse [Obj03] programming environment. Furthermore,
different instantiations of the compiler might exist simulta-
neously at runtime. For example, one instantiation might
do a project rebuild, while another one might do a syntax
check of a currently edited source file. Those instantiations
of the compiler should have no shared state, except for the
Eclipse runtime environment and the global file system. In
a system where the results of a composition are not objects
or classes, this is very hard to achieve.

Scala’s aim to provide advanced constructs for the ab-
straction and composition of components is shared by sev-
eral other research efforts. From Beta [MMPN93] comes the
idea that everything should be nestable, including classes.
To address the problem of expressing nested structures that
span several source files, Beta provides a “fragment sys-
tem” as a mechanism for weaving programs, which is out-
side the language proper. This is similar to what is done in
aspect-oriented programming (indeed, the fragment system
has been used to emulate AOP [Knu99]).

Abstract types in Scala have close resemblances to ab-
stract types of signatures in the module systems of SML
and OCaml, generalizing them to a context of first-class
components. Abstract types are also very similar to the
virtual types [MMP89] of the Beta and gbeta languages.
In fact, virtual types in Beta can be modelled precisely in
Scala by a combination of abstract types and selftype an-
notations. Virtual types as found in gbeta are more pow-

erful than either Scala’s or Beta’s constructions, since they
can be inherited as superclasses. This opens up possibilities
for advanced forms of class hierarchy reuse [Ern03], but it
makes it very hard to check for accidental and incompatible
overrides. Closely related are also the delegation layers of
Caesar [Ost02, MO02], FamilyJ’s virtual classes [Wit03] and
the work on nested inheritance for Java [NCM04].

Scala’s design of mixins comes from object-oriented lin-
ear mixins [BC90], but defines mixin composition in a
symmetric way, similar to what is found in mixin mod-
ules [Dug96, HL02] or traits [SDNB03]. Jiazzi [MFH01] is
an extension of Java that adds a module mechanism based
on units [FF98], a powerful form of parametrized modules.
Jiazzi supports extensibility idioms similar to Scala, such as
the ability to implement mixins. Jiazzi is built on top of
Java, but its module language is not integrated with Java
and therefore is used more like a separate language for link-
ing Java code.

OCaml [LDG+00] and Moby [FR99] are both languages
that combine functional and object-oriented programming
using static typing. Unlike Scala, these two languages start
with a rich functional language including a sophisticated
module system and then build on these a comparatively
lightweight mechanism for classes.

The only close analogue to selftype annotations in Scala
is found in OCaml, where the type of self is an extensible
record type which is explicitly given or inferred. This gives
OCaml considerable flexibility in modelling examples that
are otherwise hard to express in statically typed languages.
But the context in which selftypes are used is different in
both languages. Instead of subtyping, OCaml uses a system
of parametric polymorhism with extensible records. The ob-
ject system and module systems in OCaml are kept separate.
Since selftypes are found only in the object system, they play
a lesser role in component abstraction than in Scala.

The rest of this paper is structured as follows. Section 2
introduces Scala’s programming constructs for component
abstraction and composition. Section 3 shows how these
constructs are applied in a type-safe subject/observer frame-
work. Section 4 discusses a larger case study where the Scala
compiler itself was transformed into a system with reusable
components. Section 5 discusses lessons learned from the
case studies. Section 6 concludes.

2 Language Constructs for Component
Abstraction and Composition

This section introduces the language constructs of Scala in-
sofar as they are necessary to understand the cases studies
that follow. Scala fuses object-oriented and functional pro-
gramming in a statically typed language. Conceptually, it
builds on a Java-like core, even though its syntax differs. It
provides in any case full interoperability with Java. Scala
programs are compiled to JVM bytecodes, with the .NET
CLR as an alternative implementation. To this foundation,
several extensions are added.

From the object-oriented tradition comes a uniform ob-
ject model, where every value is an object and every opera-
tion is a method invocation. From the functional tradition
come the ideas that functions are first-class values, and that
some objects can be decomposed using pattern matching.
Both traditions are merged in the conception of a novel type
system, where classes can be nested, classes can be aggre-

gated using mixin composition, and where types are class
members which can be either concrete or abstract.

Space does not permit us to present Scala in full in this
paper; for this, the reader is referred elsewhere [Oa04]. In
this section we focus on a description of Scala’s language
constructs that are targeted to component design and com-
position. The description given here is informal. A theory
that formalizes Scala’s key constructs and proves their soud-
ness is provided by the νObj calculus [OCRZ03].

2.1 Abstract Type Members

An important issue in component systems is how to ab-
stract from required services. There are two principal forms
of abstraction in programming languages: parameterization
and abstract members. The first form is typical for func-
tional languages, whereas the second form is typically used
in object-oriented languages. Traditionally, Java supports
parameterization for values, and member abstraction for op-
erations. The more recent Java 5.0 with generics supports
parameterization also for types.

Scala supports both styles of abstraction uniformly for
types as well as values. Both types and values can be pa-
rameters, and both can be abstract members. The rest of
this section gives an introduction to object-oriented abstrac-
tion in Scala and reviews at the same time a large part of its
type system. For reasons of space, we omit a discussion of
Scala’s constructs for functional type abstraction (aka gener-
ics). These constructs are in any case more conventional
than member type abstraction, and they can be mapped by
a syntactic transformation into the latter.

To start with an example, the following class defines cells
of values that can be read and written.

abstract class AbsCell {
type T;
val init: T;
private var value: T = init;
def get: T = value;
def set(x: T): unit = { value = x }

}

The AbsCell class defines neither type nor value parameters.
Instead it has an abstract type member T and an abstract
value member init. Instances of that class can be created
by implementing these abstract members with concrete def-
initions in subclasses. The following program shows how to
do this in Scala using an anonymous class.

val cell = new AbsCell { type T = int; val init = 1 }
cell.set(cell.get * 2)

The type of value cell is AbsCell { type T = int }.
Here, the class type AbsCell is augmented by the re-
finement { type T = int }. This makes the type alias
cell.T = int known to code accessing the cell value.
Therefore, operations specific to type T are legal, e.g.
cell.set(cell.get * 2).

Path-dependent types

It is also possible to access objects of type AbsCell without
knowing the concrete binding of its type member. For in-
stance, the following method resets a given cell to its initial
value, independently of its value type.

def reset(c: AbsCell): unit = c.set(c.init);

Why does this work? In the example above, the expression
c.init has type c.T, and the method c.set has function
type c.T => unit. Since the formal parameter type and the
concrete argument type coincide, the method call is type-
correct.

c.T is an instance of a path-dependent type. In general,
such a type has the form x0.xn.t, where n ≥ 0, x0

denotes an immutable value, each subsequent xi denotes
an immutable field of the path prefix x0.xi−1, and
t denotes a type member of the path x0.xn.

Path-dependent types rely on the immutability of the
prefix path. Here is an example where this immutability is
violated.

var flip = false;
def f(): AbsCell = {
flip = !flip;
if (flip) new AbsCell { type T = int; val init = 1 }
else new AbsCell { type T = String; val init = "" }

}
f().set(f().get) // illegal!

In this example subsequent calls to f() return cells where
the value type is alternatingly either int or String. The
last statement in the code above is erroneous since it tries
to set an int cell to a String value. The type system does
not admit this statement, because the computed type of
f().get would be f().T. This type is not well-formed, since
the method call f() does not constitute a well-formed path.

Type selection and singleton types

In Java, where classes can also be nested, the type of a nested
class is denoted by prefixing it with the name of the outer
class. In Scala, this type is also expressible, in the form of
Outer#Inner, where Outer is the name of the outer class in
which class Inner is defined. The “#” operator denotes a
type selection. Note that this is conceptually different from
a path dependent type p.Inner, where the path p denotes a
value, not a type. Consequently, the type expression Outer#t
is not well-formed if t is an abstract type defined in Outer.

In fact, path dependent types can be expanded to type
selections. The path dependent type p.t is taken as a short-
hand for p.type#t. Here, p.type is a singleton type, which
represents just the object denoted by p. Singleton types by
themselves are also useful for supporting chaining of method
calls. For instance, consider a class C with a method incr
which increments a protected integer field, and a subclass D
of C which adds a decr method to decrement that field.

class C {
protected var x = 0;
def incr: this.type = { x = x + 1; this }

}
class D extends C {
def decr: this.type = { x = x - 1; this }

}

Then we can chain calls to the incr and decr method, as in

val d = new D; d.incr.decr;

Without the singleton type this.type, this would not have
been possible, since d.incr would be of type C, which
does not have a decr member. In that sense, this.type
is similar to (covariant uses of) Kim Bruce’s mytype con-
struct [BSvG95].

Parameter bounds

We now refine the Cell class so that it also provides a
method setMax which sets a cell to the maximum of the
cell’s current value and a given parameter value. We would
like to define setMax so that it works for all cell value types
admitting a comparison operation “<”, which is a method of
class Ordered. For the moment we assume this class is de-
fined as follows (a more refined generic version of this class
is in the standard Scala library).

abstract class Ordered {
type O;
def < (that: O): boolean;
def <= (that: O): boolean =
this < that || this == that

}

Class Ordered has a type “O” and a method “<” as abstract
members. A second method, “<=”, is defined in terms of
“<”. Note that Scala does not distinguish between operator
names and normal identifiers. Hence, “<” and “<=” are legal
method names. Furthermore, infix operators are treated as
method calls. For identifiers m and operand expressions e1,
e2 the expression e1 m e2 is treated as equivalent to the
method call e1.m(e2). The expression this < that in class
Ordered is thus simply a more convenient way to express the
method call this.<(that).

The new cell class can be defined in a generic way using
bounded type abstraction:

abstract class MaxCell extends AbsCell {
type T <: Ordered { type O = T }
def setMax(x: T) = if (get < x) set(x)

}

Here, the type declaration of T is constrained by an up-
per type bound which consists of a class name Ordered and
a refinement { type O = T }. The upper bound restricts
the specializations of T in subclasses to those subtypes τ
of Ordered for which the type member O of τ equals T.

Because of this constraint, the “<” method of class
Ordered is guaranteed to be applicable to a receiver and an
argument of type T. The example shows that the bounded
type member may itself appear as part of the bound, i.e.
Scala supports F-bounded polymorphism [CCH+89].

2.2 Symmetric Mixin Composition

After having explained Scala’s constructs for type abstrac-
tion, we now focus on its constructs for class composi-
tion. Mixin class composition in Scala is a fusion of the
object-oriented, linear mixin composition of Bracha [BC90],
and the more symmetric approaches of mixin modules
[Dug96, HL02] and traits [SDNB03]. To start with an ex-
ample, consider the following class for iterators.

abstract class AbsIterator {
type T;
def hasNext: boolean;
def next: T;

}

The class is written using an abstract type member T which
represents the iterator’s element type. One could alterna-
tively have chosen a generic representation – in fact that’s
what is done in the Scala standard library. Next, consider a

class which extends Iterator with a method foreach, which
applies a given function to every element returned by the
iterator.

abstract class RichIterator extends AbsIterator {
def foreach(f: T => unit): unit =
while (hasNext) f(next);

}

The parameter f has type T => unit, i.e. it is a function
that takes arguments of type T and returns results of the
trivial type unit.

Here is a concrete iterator class, which returns successive
characters of a given string:

class StringIterator(s: String) extends AbsIterator {
type T = char;
private var i = 0;
def hasNext = i < s.length();
def next = { val x = s.charAt(i); i = i + 1; x }

}

We now would like to combine the functionality of
RichIterator and StringIterator in a single class. With
single inheritance and interfaces alone this is impossible, as
both classes contain member implementations with code.
Therefore, Scala provides a mixin-class composition mecha-
nism which allows programmers to reuse the delta of a class
definition, i.e., all new definitions that are not inherited.
This mechanism makes it possible to combine RichIterator
with StringIterator, as is done in the following test pro-
gram. The program prints a column of all the characters of
a given string.

object Test {
def main(args: Array[String]): unit = {
class Iter extends StringIterator(args(0))

with RichIterator;
(new Iter) foreach System.out.println

}
}

The Iter class in function main is constructed from a
mixin composition of the parent classes StringIterator and
RichIterator. The first parent class is called the superclass
of Iter, whereas the other class is called a mixin.

Members of mixin compositions

The Iter class inherits members from both StringIterator
and RichIterator. Generally, a class derived from a mixin
composition C0 with ... with Cn can define members itself
and can inherit members from all n+1 parent classes. There
are five rules that determine the set of members of a class:

• A member named m defined in a class C replaces all
members named m defined in base classes of C.

• A concrete member m of a parent class replaces all
abstract members m of other parent classes.

• A concrete member m of a mixin class C1, . . . , Cn re-
places a member m of the superclass C0,

• If some concrete member m is implemented in two dif-
ferent mixin classes, the inheriting class has to resolve
the conflict by giving an explicit overriding definition
of m.

• If all definitions of a member are abstract, the member
is inherited from the last parent class in which it is
defined.

A particular feature of Scala is that regular classes and mixin
classes are not distinguished syntactically; every non-final
class may be used as a superclass or as a mixin. In the
example above, one might have equivalently exchanged su-
perclass and mixin class:

class Iter extends RichIterator
with StringIterator(args(0));

The two formulations of Iter have exactly the same mem-
bers. This is due to the fact that every member of Iter
comes from a concrete definition in exactly one of its par-
ent classes. On the other hand, if a member is concretely
defined in several parent classes, the order matters, because
then the member of the mixin-class takes precedence over
the member of the superclass. The member inherited from
the superclass remains accessible, but requires a super pre-
fix.

Super calls

Consider the following class of synchronized iterators, which
ensures that its operations are executed in a mutually ex-
clusive way when called concurrently from several threads.

abstract class SyncIterator extends AbsIterator {
abstract override def hasNext: boolean =
synchronized(super.hasNext);

abstract override def next: T =
synchronized(super.next);

}

To obtain rich, synchronized iterators over strings, one uses
a mixin composition involving three classes:

StringIterator(someString) with RichIterator
with SyncIterator

This composition inherits the two members hasNext and next
from the mixin class SyncIterator. Each method wraps a
synchronized application around a call to the corresponding
member of its superclass.

In fact, the order in which mixin classes appear in a
composition does not matter – that’s why Scala’s construct
is called symmetric mixin composition in contrast to the
linear mixins of Bracha [BC90]. In the example above, we
could have equivalently written

StringIterator(someString) with SyncIterator
with RichIterator

There’s another subtlety, however. The class accessed
by the super calls in SyncIterator is not its statically de-
clared superclass AbsIterator. This would not make sense,
as hasNext and next are abstract in this class. Instead, super
accesses the superclass StringIterator of the mixin compo-
sition in which SyncIterator takes part. In a sense, the
superclass in a mixin composition overrides the statically
declared superclasses of its mixins. It follows that calls to
super cannot be statically resolved when a class is defined;
their resolution has to be deferred to the point where a class
is instantiated or inherited. To ensure type-safety, the ac-
tual superclass in a mixin composition has to conform to the
statically declared superclasses of all its mixins.

Note finally that in a language like Java or C#, the super
calls in class SyncIterator would be illegal, precisely because
they designate abstract members of the static superclass. As
we have seen, Scala allows this construction, but it still has
to make sure that the class is only used in a context where
super calls access members that are concretely defined. This
is enforced by the occurrence of the abstract and override
modifiers in class SyncIterator. An abstract override mod-
ifier pair in a method definition indicates that the method’s
definition is not yet complete because it overrides and uses
an abstract member in a superclass. A class with incomplete
members must be declared abstract itself, and subclasses of
it can be instantiated only once all members overridden by
such incomplete members have been redefined.

2.3 Selftype annotations

Each of the operands of a mixin composition
C0 with ... with Cn, must refer to a class. The mixin
composition mechanism does not allow any Ci to refer
to an abstract type. This restriction makes it possible
to statically check for ambiguities and override conflicts
at the point where a class is composed. Scala’s selftype
annotations provide an alternative way of associating a class
with an abstract type. The following example illustrates
this for a generic implementation of directed graphs that
abstracts over its concrete node type:

abstract class Graph {
type Node <: BaseNode;
class BaseNode {
def connectWith(n: Node): Edge = new Edge(this, n);

}
class Edge(from: Node, to: Node) {
def source() = from;
def target() = to;

}
}

The abstract Node type is upper-bounded by BaseNode to ex-
press that we want nodes to support a connectWith method.
This method creates a new instance of class Edge which links
the receiver node with the argument node. Unfortunately,
this code does not compile, because the type of the self ref-
erence this is BaseNode and therefore does not conform to
type Node which is expected by the constructor of class Edge.
Thus, we have to state somehow that the identity of class
BaseNode has to be expressible as type Node. Here is a pos-
sible encoding:

abstract class Graph {
type Node <: BaseNode;
abstract class BaseNode {
def connectWith(n: Node): Edge = new Edge(self, n);
def self: Node;

}
class Edge(from: Node, to: Node) {
...

}
}

This version of class BaseNode uses an abstract method self
for expressing its identity as type Node. Concrete subclasses
of Graph have to define a concrete Node class for which it
is possible to implement method self as the following code
shows:

class LabeledGraph extends Graph {
class Node(label: String) extends BaseNode {
def getLabel: String = label;
def self: Node = this;

}
}

This programming pattern appears quite frequently when
family polymorphism is combined with explicit references
to this. Therefore, Scala supports a mechanism for spec-
ifying the type of this explicitly. Such an explicit selftype
annotation is used in the following version of class Graph:

abstract class Graph {
type Node <: BaseNode;
class BaseNode: Node {
def connectWith(n: Node): Edge = new Edge(this, n);

}
class Edge(from: Node, to: Node) {
def source() = from;
def target() = to;

}
}

In the declaration

class BaseNode: Node { ...

Node is called the selftype of class BaseNode. When a selftype
is given, it is taken as the type of this inside the class.
Without a selftype annotation, the type of this is taken as
usual to be the type of the class itself. In class BaseNode, the
selftype is necessary to render the call new Edge(this, n)
type-correct.

Selftypes can be arbitrary; they need not have a relation
with the class being defined. Type soundness is still guaran-
teed, because of two requirements: (1) the selftype of a class
must be a subtype of the selftypes of all its base classes, (2)
when instantiating a class in a new expression, it is checked
that the selftype of the class is a supertype of the type of
the object being created.

Selftypes were first introduced in the νObj calculus,
mainly for technical reasons. We expected initially that they
would not be used very frequently in Scala programs, but
included them anyway since they seemed essential in situa-
tions where family polymorphism is combined with explicit
self references. To our surprise, selftypes turned out to be
the key construct for lifting static systems to component-
based systems. This is further explained in Section 4.

2.4 Service-Oriented Component Model

The presented class abstraction and composition mecha-
nisms form the basis of a service-oriented software compo-
nent model. Software components are units of computation
that provide a well-defined set of services. Typically, a soft-
ware component is not self-contained; i.e., its service im-
plementations rely on a set of required services provided by
other cooperating components.

In our model, software components correspond to classes.
The concrete members of a class represent the provided ser-
vices, deferred members can be seen as the required ser-
vices. Component composition is based on mixins, which al-
low programmers to create bigger components from smaller
ones.

The mixin-class composition mechanism identifies ser-
vices with the same name; for instance, a deferred method m

can be implemented by a class C defining a concrete method
m simply by mixing-in C. Thus, the component composi-
tion mechanism associates automatically required with pro-
vided services. Together with the rule that concrete class
members always override deferred ones, this principle yields
recursively pluggable components where component services
do not have to be wired explicitly [Zen02].

This approach simplifies the assembly of large compo-
nents with many recursive dependencies. It scales well even
in the presence of many required and provided services, since
the association of the two is automatically inferred by the
compiler. The most important advantage over traditional
black-box components is that components are extensible en-
tities: they can evolve by subclassing and overriding. They
can even be used to add new services to other existing com-
ponents, or to upgrade existing services of other compo-
nents. Overall, these features enable a smooth incremental
software evolution process [Zen04b].

3 Case Study: Subject/Observer

The abstract type concept is particularly well suited for
modeling families of types which vary together covariantly.
This concept has been called family polymorphism [Ern01].
As an example, consider the publish/subscribe design pat-
tern. There are two classes of participants – subjects and
observers. Subjects define a method subscribe by which ob-
servers register. They also define a publish method which
notifies all registered observers. Notification is done by
calling a method notify which is defined by all observers.
Typically, publish is called when the state of a subject
changes. There can be several observers associated with
a subject, and an observer might observe several subjects.
The subscribe method takes the identity of the registering
observer as parameter, whereas an observer’s notify method
takes the subject that did the notification as parameter.
Hence, subjects and observers refer to each other in their
method signatures.

All elements of the subject/observer design pattern are
captured in the following system.

abstract class SubjectObserver {
type S <: Subject;
type O <: Observer;
abstract class Subject: S {
private var observers: List[O] = List();
def subscribe(obs: O) =
observers = obs :: observers;

def publish =
for (val obs <- observers) obs.notify(this);

}
abstract class Observer {
def notify(sub: S): unit;

}
}

The top-level class SubjectObserver has two member classes:
one for subjects, the other for observers. The Subject class
defines methods subscribe and publish. It maintains a list
of all registered observers in the private variable observers.
The Observer class only declares an abstract method notify.

Note that the Subject and Observer classes do not di-
rectly refer to each other, since such “hard” references would
prevent covariant extensions of these classes in client code.
Instead, SubjectObserver defines two abstract types S and

O which are bounded by the respective class types Subject
and Observer. The subject and observer classes use these
abstract types to refer to each other.

Note also that class Subject relies on an explicit selftype
annotation, which is necessary to render the method call
obs.notify(this) type-correct.

The mechanism defined in the publish/subscribe pattern
can be used by inheriting from SubjectObserver, defining ap-
plication specific Subject and Observer classes. An example
is the SensorReader object, which defines sensors as subjects
and displays as observers.

object SensorReader extends SubjectObserver {
type S = Sensor;
type O = Display;
abstract class Sensor extends Subject {
val label: String;
var value: double = 0.0;
def changeValue(v: double) = {
value = v;
publish;

}
}
class Display extends Observer {
def println(s: String) = ...
def notify(sub: Sensor) =
println(sub.label + " has value " + sub.value);

}
}

An object definition such as the one for SensorReader cre-
ates a singleton class which has as a single instance the de-
fined object. In the SensorReader object, type S is bound to
Sensor whereas type O is bound to Display. Hence, the two
formerly abstract types are now defined by overriding defi-
nitions. This “tying the knot” is always necessary when cre-
ating a concrete class instance. On the other hand, it would
also have been possible to define an abstract SensorReader
class which could be refined further by client code. In this
case, the two abstract types would have been overridden
again by abstract type definitions.

abstract class AbsSensorReader extends SubjectObserver {
type S <: Sensor;
type O <: Display;
...

}

The following program illustrates how the SensorReader ob-
ject is used.

object Test {
import SensorReader._;
val s1 = new Sensor { val label = "sensor1" }
val s2 = new Sensor { val label = "sensor2" }
def main(args: Array[String]) = {
val d1 = new Display; val d2 = new Display;
s1.subscribe(d1); s1.subscribe(d2);
s2.subscribe(d1);
s1.changeValue(2); s2.changeValue(3);

}
}

The Subject/Observer pattern has been studied by sev-
eral groups before. A solution structurally close to ours
but based on virtual types has been sketched by Thorup
[Tho97]. The development in this section shows by example

that Beta’s virtual types can be emulated by a combination
of Scala’s abstract types and explicitly typed self references.
Other approaches to expressing the publish/subscribe pat-
tern are based on a generalization of mytype [BOW98] or
on parametric polymorphism using OCaml’s row-variables
to model extensible records [RV00].

4 Case Study: The Scala Compiler

The Scala compiler, scalac, consists of several phases. The
first phase is syntax analysis, implemented by a scanner
and a conventional recursive descent parser. The result of
this phase is an abstract syntax tree. The next phase at-
tributes the syntax tree with symbol and type information.
This is followed by a number of phases that transform the
syntax tree. Most transformations replace some high-level
Scala-specific constructs with lower-level constructs that can
more directly be represented in bytecode. Other transfor-
mations perform optimizations such as inlining or tail call
elimination. Transformations always consume and produce
attributed trees.

All phases after syntax analysis work with a symbol ta-
ble. This table itself consists of a number of modules. Some
of these are:

• A module Names that represents symbol names. A name
is represented as an object consisting of an index and
a length, where the index refers to a global array in
which all characters of all names are stored. A hashmap
ensures that names are unique, i.e. that equal names
always are represented by the same object.

• A module Symbols that represents symbols correspond-
ing to definitions of entities like classes, methods, vari-
ables, etc. in Scala and Java modules.

• A module Types that represents types.

• A module Definitions that contains globally visible
symbols for definitions that have a special significance
for the Scala compiler. Examples are Scala’s value
classes, the top and bottom classes scala.Any and
scala.All, or the boolean values true and false.

• A module Scopes that represents local scopes and class
sets of class members.

The structure of these modules is highly recursive. For in-
stance, every symbol has a type, and some types also have
a symbol. The Definitions module creates symbols and
types, and is in turn used by certain operations in Types.
References between modules involve member accesses, ob-
ject creations, but also inheritance. For instance, the types
of many symbols are lazily created, so that forward refer-
ences in definitions can be supported and library class and
source files can be loaded on demand. This is achieved by
initializing the types of symbols to special “lazy types” that
replace themselves with a symbol’s true type the first time
the symbol is accessed. Lazy types deal with the dynamics
of compilation instead of the type structure; consequently,
they are defined outside the Types module, even though they
inherit from the Type class.

State of the Art

In the currently released version of the Scala compiler,
all modules described above are implemented as top-level
classes (implemented in Java), which contain static mem-
bers and data. For instance, the contents of names are stored
in a static array in the Names class. Likewise, global sym-
bols are stored as static data in the Definitions class. This
technique has the advantage that it supports complex re-
cursive references. But it also has two disadvantages. First,
since all references between classes are hard links, we can-
not treat compiler classes as components that can be com-
bined with different other components. This, in effect, pre-
vents piecewise extensions or adaptations of the compiler.
Second, since the compiler works with mutable static data
structures, it is not re-entrant, i.e. it is not possible to have
several concurrent executions of the compiler in a single VM.
This is a problem for using the Scala compiler in an inte-
grated development environment such as Eclipse.

These problems are of course not new. For instance, the
Java compilers javac and JaCo [ZO01] have a structure sim-
ilar to the one of scalac. In these compilers, static data
structures and static component references are avoided by
using a design pattern which parameterizes compiler com-
ponents with a context. A context is a mapping from com-
ponent identifiers to component implementations (objects).
A compiler component uses the context to get access to co-
operating runtime components.

This approach makes it possible to run several compil-
ers in one VM simply by creating different contexts with
independent instantiations of the compiler components. On
the other hand, there are several disadvantages. First of all,
a simple solution, like the one used in javac, models con-
texts as maps from names to objects. This approach is sub-
ject to dynamic typing and thus statically unsafe. JaCo’s
Context/Component design pattern uses a combination of
an object repository and an abstract factory to model con-
texts [Zen98, Zen04b]. This pattern provides static type
safety, but is associated with a relatively high protocol over-
head. For instance, JaCo’s 30000 lines of code include 600
lines of code just for context definitions and more than 1200
lines of code for object factories, not counting the code
within the actual compiler components that use the con-
texts and the factories. Contexts also break encapsulation
because they require that data structures are packaged out-
side the classes that access them.

Beyond the protocol overhead, static typing, and encap-
sulation issues there is always the risk to violate the pro-
gramming pattern, since there is no way to enforce the de-
sign statically. For instance, if two instances of a compiler
are executed simultaneously, and one name table is allocated
per compiler run, it becomes important that names referring
to different compiler instances are kept distinct. Otherwise
a name might index a table which does not store its charac-
ters but some random characters. This isolation cannot be
guaranteed statically.

Another solution to the problem is to use programming
languages providing constructs for component composition
and abstraction. For instance, functors of the SML mod-
ule system [Mac84] can be used to implement component-
based systems where component interactions are not hard-
coded. On the other hand, functors are neither first-class
nor higher-order. Consequently, they cannot be used to dy-
namically manufacture new compilers from dynamically pro-
vided components. Other module systems, like MzScheme’s

class SymbolTable {
class Name { ... }
// name specific operations

class Type { ... }
// subclasses of Type and type specific operations

class Symbol { ... }
// subclasses of Symbol and symbol specific operations

object definitions { // global definitions }

// other elements
}

Listing 1: scalac’s symbol table structure

Units [FF98], are expressive enough to allow this, but
they are often only dynamically typed, giving no guaran-
tees at compile-time. Typical component-oriented program-
ming languages like ArchJava [ACN02], Jiazzi [MFH01],
and ComponentJ [SC00] are statically typed and do pro-
vide good support for creating and composing generic soft-
ware components, but their type systems are not expressive
enough to fully isolate reentrant systems. The module sys-
tem of Keris [Zen04a] can enforce a strict separation of mul-
tiple reentrant instances of a compiler, but without support
for first-class modules it requires that the number of simul-
taneously running compiler instances is known statically.

A simple reentrant compiler implementation

For the rewrite of the Scala compiler we found another so-
lution, which is type safe, and which uses the language ele-
ments of Scala itself. As a first step towards this solution,
we introduce nesting of classes to express local structure.
A simplified version of the symbol table component of the
scalac compiler – to be refined later – is shown in Listing 1.

Here, classes Name, Symbol, Type, and the object
Definitions are all members of the SymbolTable class. The
whole compiler (which would be structured similarly) can
access definitions in this class by inheriting from it:

class ScalaCompiler extends SymbolTable { ... }

In that way, we arrive at a compiler without static defi-
nitions. The compiler is by design re-entrant, and can be
instantiated like any other class as often as desired. Further-
more, member types of different instantiations are isolated
from each other, which gives a good degree of type safety.
Consider for instance a scenario where two instances c1 and
c2 of the Scala compiler co-exist.

val c1 = new ScalaCompiler;
val c2 = new ScalaCompiler;

Names created by the c1 compiler instance have the path-
dependent type c1.Name, whereas names created by c2 have
type c2.Name. Since these two types are incompatible, a
problematic assignment such as the following would be ruled
out.

c1.definitions.AllClass.name =
c2.definitions.AllClass.name // illegal!

abstract class Types: (Types with Names
with Symbols
with Definitions) {

class Type { ... }
// subclasses of Type and
// type specific operations

}
abstract class Symbols: (Symbols with Names

with Types) {
class Symbol { ... }
// subclasses of Symbol and
// symbol specific operations

}
abstract class Definitions: (Definitions with Names

with Symbols){
object definitions { ... }

}
abstract class Names {
class Name { ... }
// name specific operations

}
class SymbolTable extends Names

with Types
with Symbols
with Definitions;

class ScalaCompiler extends SymbolTable
with Trees
with ... ;

Listing 2: Symbol table components with required interfaces

Component-based Implementation

The code sketched above has a very severe shortcoming: it is
a large monolithic program and thus not really component-
based! Indeed, the whole symbol table code (roughly 4000
lines) is now placed in a single source file. This clearly be-
comes impractical for large programs.

Nevertheless, the previous attempt points the way to a
solution. We need to express a nested structure like the one
above, but with its constituents spread over separate source
files. The problem is how to express cross-file references in
this setting. For instance, in class Symbol one needs to refer
to the corresponding Type class which belongs to the same
compiler instance but which is defined in a different source
file.

There are several possible solutions to this problem. The
solution we have chosen is sketched in Listing 2. It uses an
explicit selftype to express the required services of a compo-
nent.

The Types class contains a class hierarchy rooted in class
Type as well as operations that relate to types. It comes
with an explicit selftype, which is an intersection type of
all classes required by Types. Besides Types itself, these
classes are Names, Symbols, and Definitions. Members of
these classes are thus accessible in class Types. For instance,
one can write this.Symbol or shorter just Symbol for the
Symbol class member of the required Symbols class.

The schema for the other symbol table classes follows the
one for types. In each case, all required classes are listed as
operands of an intersection type in an explicit selftype an-
notation. The whole symbol table class is then simply the

mixin composition of these components. Figure 4 illustrates
this principle. For every component, it shows the provided
classes as well as the classes that are required from other
components. Combining all components via mixin compo-
sition yields a fully self-contained component without any
required classes. This class represents our complete instan-
tiatable symbol table abstraction.

The presented scheme is statically type safe, and pro-
vides explicit notation to express required as well as pro-
vided interfaces of a component. It is concise, since no ex-
plicit wiring, for example by means of parameter passing, is
necessary. It provides great flexibility for component struc-
turing. In fact it allows to lift arbitrary module structures
with static data and hard references to component systems.

Variants

Granularity of dependency specifications The pre-
sented scheme is not the only possible solution. Several vari-
ants are possible, which differ in the way required compo-
nents are abstracted. For instance, one can be more concise
but less precise in assuming as selftype of each symbol table
component the SymbolTable class itself. E.g.:

class Types: SymbolTable { ... }

One can also characterize required services in more detail
by using abstract type and value members. E.g:

class Types {
type Symbol <: SymbolInterface;
type Name <: NameInterface;
// other required types

def newValue(name: Name): Symbol;
// other required values

class Type { ... }
...

}

One can thus narrow required services to arbitrary sets of
component members, whereas previously one could require
components only as a whole. The price to be paid for the
precision is a loss of conciseness, since bounds of abstract
types such as SymbolInterface in the code above have to
be defined explicitly. Furthermore, abstracted types cannot
be inherited, since abstract types in Scala cannot be super-
classes or mixins.

Hierarchical organization of components In all vari-
ations, the symbol table class itself results from a mixin
composition of all its constituent classes. From a system
view, all symbol table components are defined on the same
level. But it is also possible to define subsystems which can
be nested in other components by means of aggregation. An
example is the parser phase component of scalac:

class ParserPhase extends Lexical with Syntactic {
val compiler: Compiler;

}

Here, the sub-components Lexical and Syntactic are struc-
tured similarly to the symbol table components with self
types expressing required components. The syntactic anal-
ysis phase also needs to access the compiler as a whole, for
instance for reporting errors or for constructing syntax trees.

Types

Type

Name

Symbol

definitions

Symbols

Symbol

Name

Type

Definitions

Name

Symbol

definitions

Names

Name

SymbolTable

Type

Symbol

definitions

Name

Inheritance
Mixin composition

Class

Required

Provided

Selftype annotation Nested class

Figure 1: Composition of the Scala compiler’s symbol tables.

These accesses are done via a member field compiler, which
is abstract in class ParserPhase. The corresponding inte-
gration of the parser phase object in the scalac compiler is
sketched in the listing below.

class ScalaCompiler extends SymbolTable with Trees {
object parserPhase extends ParserPhase {
val compiler: ScalaCompiler.this.type =
ScalaCompiler.this

} ...
}

Class ScalaCompiler defines an instance of class ParserPhase
in which the compiler field is bound to the enclosing
ScalaCompiler instance itself. The type of that field is the
singleton type ScalaCompiler.this.type, which has as the
only member the current instance of ScalaCompiler. The sin-
gleton type annotation is necessary since ParserPhase con-
tains members that refer to types defined in ScalaCompiler.
An example is the type Tree of abstract syntax trees, which
ScalaCompiler inherits from class Trees. To connect the tree
generated by the parser phase with later phases, the type
checker needs to know the type equality

parserPhase.compiler.Tree = Tree

in the context of ScalaCompiler.this. The singleton
type annotation establishes ScalaCompiler.this as an alias
of ScalaCompiler.this.parserPhase.compiler and therefore
validates the above equality.

Component Adaptation

The new compiler architecture makes adaptations very easy.
As an example, consider logging. Let’s say we want to log
every creation of a symbol or a type in the Scala compiler.
Logging involves writing information on some output chan-
nel log, of type java.io.PrintStream. The crucial point is
that we want to extend an existing compiler with logging
functionality. To do this, we do not want to modify the

compiler’s source code. Neither do we want to require of
the compiler writer to have pre-planned the logging exten-
sion by providing hooks. Such hooks tend to impair the
clarity of the code since they mix separate concerns in one
class. Instead, we use subclassing to add logging function-
ality to existing classes. E.g.:

abstract class LogSymbols extends Symbols {
val log: java.io.PrintStream;
override def newTermSymbol(name: Name): TermSymbol =
{
val x = super.newTermSymbol(name);
log.println("creating term symbol " + name);
x

}
// similarly for all other symbol creations.

}

Analogously, one can define a subclass LogTypes of class
Types to log all type creations.

The question then is how to inject the logging behavior
into an existing system. Since the whole Scala compiler is
defined as a single class, this is a straightforward application
of mixin composition:

class LoggedCompiler extends ScalaCompiler
with LogSymbols with LogTypes {

val log: PrintStream = System.out
}

In the mixin composition the new implementation of
newTermSymbol in class LogSymbols overwrites the implemen-
tation of the same method which is defined in class Symbol
and which is inherited by class ScalaCompiler. Conversely,
the abstract members named log in classes LogSymbols and
LogTypes are replaced by the concrete definition of log in
class LoggedCompiler.

This adaptation might seem trivial. But note that in
a classical system architecture with static components and
hard links, it would have been impossible. For such archi-

tectures, aspect-oriented programming [KLM+97] proposes
an alternative solution, which is based on code rewriting. In
fact, our component architecture can handle some of the sce-
narios for which AOP has been proposed as the technique of
choice. Other examples besides logging are synchronization,
security checking, or choice of data representation. More
generally, our architecture can handle all before, after, and
around advice on method reception pointcut designators.
These represent only one instance of the pointcut desig-
nators provided by languages such as AspectJ [KHH+01].
Therefore, general AOP is clearly more powerful than our
scheme. On the other hand, our scheme has the advantage
that it is statically typed, and that scope and order of ad-
vice can be precisely controlled using the semantics of mixin
composition.

5 Discussion

We have identified three building blocks for the construc-
tion of reusable components: abstract type members, ex-
plicit selftypes, and symmetric mixin composition. The
three building blocks were formalized in the νObj calculus
and were implemented in Scala. Scala is also the language
in which all programming examples and case studies of this
paper are written. It constitutes thus a concrete experiment
which validates the construction principles presented here in
a range of applications written by many different people.

But Scala is, of course, not the only possible language de-
sign that would enable such constructions. In this section,
we try to generalize from Scala’s concrete setting, in order
to identify what language constructs are essential to achieve
systems of scalable and dynamic components. We assume in
the whole discussion a strongly and statically typed object-
oriented language. The situation is quite different for dy-
namically typed languages, and is different again for func-
tional languages with ML-like module systems.

The first important language construct is class nesting.
Since class nesting is already supported by mainstream lan-
guages, we have omitted it from our discussion so far, but it
is essential nonetheless. It is the primary means for aggrega-
tion and encapsulation. Without it, we could only compose
systems consisting of fields and methods, but not systems
that contain themselves classes. Said otherwise, every class
would have to be either a base-class or mixin of a top-level
system (in which case it would only have one instance per
top-level instantiation), or it would be completely external
to that system (in which case it cannot access anything hid-
den in the system). It would still be possible to construct
component-based systems as discussed by this paper, but
the necessary amount of wiring would be substantial, and
one would have to give up object-oriented encapsulation
principles to a large extent.

The second language construct is some form of mixin
or trait composition or multiple inheritance. Not all de-
tails have to be necessarily done the way they were done in
Scala’s symmetric mixin composition. We only require two
fundamental properties: First, that mixins or classes can
contain themselves mixins or classes as members. Second,
that concrete implementations in one mixin or class may
replace abstract declarations in another mixin or class, in-
dependent of the order in which the mixins were composed.
The latter property is necessary to implement mutually re-
cursive dependencies between components.

The third language construct is some means of abstrac-

tion over the required services of a class. Such abstraction
has to apply to all forms of definitions that can occur in-
side a class. In particular it must be possible to abstract
over classes as well as methods. We have seen in Scala two
means of abstraction. One worked by abstracting over class
members, the other by abstracting over the type of self.
These two techniques are largely complementary in what
they achieve.

Abstraction over class members gives very fine-grained
control over required types and services. Each required en-
tity is named individually, and also can be given a type
(or type-bound in the case of type members) which cap-
tures only what is required from the entity by the contain-
ing class. The entity may then be defined in another class
with a stronger type (or type-bound) than the required one.
In other words, class member abstraction introduces “type-
slack” between the required and provided interfaces for the
same service. This in turn allows us to specify the required
interface of a class with great precision.

Abstraction over class members also supports covariant
specialization. In fact, this is a consequence of the type-
slack it introduces. Covariant specialization is important in
many different situations. One set of situations is charac-
terized by the generic “expression problem” example. Here,
the task is to extend systems over a recursive data type by
new data variants as well as by new operations over that
data [Tor04, OZ05]. Related to this is also the production
line problem where a set of features has to be composed in a
modular way to yield a software product [LHBC05]. Family
polymorphism is another instance of covariant specializa-
tion. Here, several types need to be specialized together, as
in the subject/observer example of Section 3.

The downside of the precision of class member abstrac-
tion is its verbosity. Listing all required methods, fields,
and types including their types and type bounds can add
significant overhead to a component’s description. Selftype
abstraction is a more concise alternative to member abstrac-
tion. Instead of naming and typing all members individually
one simply attaches a type to this. This is somewhat akin
to the difference between structural and nominal typing.

In fact, selftype abstractions are as concise as traditional
references between static components. To see this, note that
import clauses in traditional systems correspond to sum-
mands in a compound selftype in our scheme. Consider for
instance a system of three Java classes A, B, and C, each of
which refers to the other two. Assume that all three classes
contain static nested classes. Then class A could import all
nested classes in B and C using code like this:

import B.*;
import C.*;
class A { ... }

Classes B and C would be organized similarly.
Translating Java’s static setting into one where compo-

nents can be instantiated multiple times, we obtain the fol-
lowing, slightly more concise Scala code:

class A: (A with B with C) { ... }

Classes B and C are organized similarly. The inter-class ref-
erences in A, B, and C stay exactly the same. In particular,
all nested classes can be accessed without qualification. The
only thing that needs to be written in addition is a definition
of a top-level application which contains all three classes:

class All extends A with B with C;

In the case of static components, the definition of the set
of classes making up an application is implicit — it is the
transitive closure of all classes reachable from the main pro-
gram.

In Scala, there is a second advantage of selftype abstrac-
tion over class member abstraction. This has to do with a
shortcoming of class member abstraction as it is defined in
the language. In fact, Scala allows member abstraction only
over types, but lacks the possibility to abstract over other
aspects of classes. Abstract types can be used as types for
members, but no instances can be created from them, nor
can they be inherited by subclasses. Hence, if some of the
classes defined in a component inherit from some external
class in the component’s required interface, selftype abstrac-
tion is the only available means to express this. The same
holds if a component instantiates objects from an external,
required class using new rather than going through a factory
method.

Lifting the restrictions on class member abstraction
would lead us from abstract types to virtual classes in their
full generality, in the way they are defined in gbeta [Ern99],
for example. This would yield a more expressive language
for flexible component architectures [Ern03]. On the other
hand, the resulting language would have to either avoid or
detect accidental override conflicts between pairs of classes
that do not statically inherit from each other. Neither is
easy to type-check or to implement on standard platforms
such as JVM or the .NET CLR.

6 Conclusion

We have presented three building blocks for reusable compo-
nents: abstract type members, explicit selftypes, and sym-
metric mixin composition. Each of these constructs exists in
some form also in other formalisms, but we believe to be the
first to combine them in one language and to have discovered
the importance of their combination in building and com-
posing software components. We have demonstrated their
use in two case studies, a publish/subscribe framework and
the Scala compiler itself. The case studies show that our lan-
guage constructs are adequate to lift an arbitrary assembly
of static program parts to a component system where re-
quired interfaces are made explicit and hard links between
components are avoided. The lifting completely preserves
the structure of the original program.

This is not the end of the story, however. The scenario
we have studied was the initial construction of a statically
typed system of components running on a single site. We did
not touch aspects of distribution and dynamic component
discovery, nor did we treat the evolution of a component
system over time. We intend to focus on these topics in
future work.

Acknowledgments The Scala design and implementa-
tion has been a collective effort of many people. Besides the
authors, Philippe Altherr, Vincent Cremet, Iulian Dragos,
Burak Emir, Sebastian Maneth, Stéphane Micheloud, Niko-
lay Mihaylov, Michel Schinz, and Erik Stenman have made
important contributions. The work was partially supported
by grants from the Swiss National Fund under project NFS
21-61825, the Swiss National Competence Center for Re-
search MICS, Microsoft Research, and the Hasler Founda-

tion. We also thank Gilad Bracha, Stéphane Ducasse, Erik
Ernst, Nastaran Fatemi, Oscar Nierstrasz, Didier Rémy, and
Philip Wadler for useful discussions about the material pre-
sented in this paper.

References
[ACN02] Jonathan Aldrich, Craig Chambers, and David

Notkin. Architectural reasoning in ArchJava. In Pro-
ceedings of the 16th European Conference on Object-
Oriented Programming, Málaga, Spain, June 2002.

[BC90] Gilad Bracha and William Cook. Mixin-Based Inher-
itance. In Norman Meyrowitz, editor, Proceedings of
ECOOP ’90, pages 303–311, Ottawa, Canada, Octo-
ber 1990. ACM Press.

[BOW98] Kim B. Bruce, Martin Odersky, and Philip Wadler. A
Statically Safe Alternative to Virtual Types. Lecture
Notes in Computer Science, 1445, 1998. Proc. ESOP
1998.

[BSvG95] Kim B. Bruce, Angela Schuett, and Robert van
Gent. PolyTOIL: A Type-Safe Polymorphic Object-
Oriented Language. In Proceedings of ECOOP ’95,
LNCS 952, pages 27–51, Aarhus, Denmark, August
1995. Springer-Verlag.

[CCH+89] Peter Canning, William Cook, Walter Hill, Walter
Olthoff, and John Mitchell. F-Bounded Quantifi-
cation for Object-Oriented Programming. In Proc.
of 4th Int. Conf. on Functional Programming and
Computer Architecture, FPCA’89, London, pages
273–280, New York, Sep 1989. ACM Pres.

[Dug96] Dominic Duggan. Mixin modules. In ACM SIG-
PLAN International Conference on Functional Pro-
gramming, 1996.

[ECM02] ECMA. C# Language Specification. Technical
Report Standard ECMA-334, 2nd Edition, Euro-
pean Computer Manufacturers Association, Decem-
ber 2002.

[Ern99] Erik Ernst. gBeta: A language with virtual at-
tributes, block structure and propagating, dynamic
inheritance. PhD thesis, Department of Computer
Science, University of Aarhus, Denmark, 1999.

[Ern01] Erik Ernst. Family polymorphism. In Proceedings
of the European Conference on Object-Oriented Pro-
gramming, pages 303–326, Budapest, Hungary, 2001.

[Ern03] Erik Ernst. Higher-Order Hierarchies. In Luca
Cardelli, editor, Proceedings ECOOP 2003, LNCS
2743, pages 303–329, Heidelberg, Germany, July
2003. Springer-Verlag.

[FF98] Matthew Flatt and Matthias Felleisen. Units: Cool
modules for HOT languages. In Proceedings of the
ACM Conference on Programming Language Design
and Implementation, pages 236–248, 1998.

[FR99] Kathleen Fisher and John H. Reppy. The Design of a
Class Mechanism for Moby. In SIGPLAN Conference
on Programming Language Design and Implementa-
tion, pages 37–49, 1999.

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad
Bracha. The Java Language Specification. Java Se-
ries, Sun Microsystems, second edition, 2000.

[HL94] Robert Harper and Mark Lillibridge. A Type-
Theoretic Approach to Higher-Order Modules with
Sharing. In Proc. 21st ACM Symposium on Princi-
ples of Programming Languages, January 1994.

[HL02] Tom Hirschowitz and Xavier Leroy. Mixin Modules
in a Call-by-Value Setting. In European Symposium
on Programming, pages 6–20, 2002.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm, and William G. Griswold. An
overview of aspectj. In Proceedings of ECOOP 2001,
Springer LNCS, pages 327–353, 2001.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Menhd-
hekar, Chris Maeda, Cristina Lopes, Jean-Marc Lo-
ingtier, and John Irwin. Aspect-oriented program-
ming. In Proceedings of the 11th European Confer-
ence on Object-Oriented Programming, pages 220–
242, Jyväskylä, Finland, 1997.

[Knu99] Jorgen Lindskov Knudsen. Aspect-oriented program-
ming in beta using the fragment system. In Proceed-
ings of the Workshop on Object-Oriented Technol-
ogy, Springer LNCS, pages 304–305, 1999.

[LDG+00] Xavier Leroy, Damien Doligez, Jacques Garrigue, Di-
dier Rémy, and Jérôme Vouillon. The Objective
Caml system release 3.00, documentation and user’s
manual, April 2000.

[Ler94] Xavier Leroy. Manifest Types, Modules and Sepa-
rate Compilation. In Proc. 21st ACM Symposium on
Principles of Programming Languages, pages 109–
122, January 1994.

[LHBC05] Roberto Lopez-Herrejon, Don Batory, and William
Cook. Evaluating support for features in advanced
modularization technologies. In Proceedings of the
European Conference on Object-Oriented Program-
ming, number July in Springer LNCS, 2005.

[Mac84] David MacQueen. Modules for Standard ML. In
Conference Record of the 1984 ACM Symposium on
Lisp and Functional Programming, Papers Presented
at the Symposium, August 6–8, 1984, pages 198–207,
New York, August 1984. Association for Computing
Machinery.

[MFH01] S. McDirmid, M. Flatt, and W. Hsieh. Jiazzi: New-
age Components for Old-Fashioned Java. In Proc. of
OOPSLA, October 2001.

[MMP89] Ole Lehrmann Madsen and Birger Moeller-Pedersen.
Virtual Classes - A Powerful Mechanism for Object-
Oriented Programming. In Proc. OOPSLA’89, pages
397–406, October 1989.

[MMPN93] O. Lehrmann Madsen, B. Møller-Pedersen, and
K. Nygaard. Object Oriented Programming in the
BETA Programming Language. ddison Wesley, June
1993.

[MO02] Mira Mezini and Klaus Ostermann. Integrating in-
dependent components with on-demand remodular-
ization. In Proceedings of OOPSLA ’02, Sigplan No-
tices, 37 (11), pages 52–67, 2002.

[NCM04] Nathaniel Nystrom, Stephen Chong, and Andrew
Myers. Scalable Extensibility via Nested Inheritance.
In Proc. OOPSLA, Oct 2004.

[Oa04] Martin Odersky and al. An overview of the scala pro-
gramming language. Technical Report IC/2004/64,
EPFL Lausanne, Switzerland, 2004.

[Obj03] Object Technology International. Eclipse Platform
Technical Overview, February 2003. www.eclipse.org.

[OCRZ03] Martin Odersky, Vincent Cremet, Christine Röckl,
and Matthias Zenger. A nominal theory of ob-
jects with dependent types. In Proc. ECOOP 2003,
Springer LNCS 2743, July 2003.

[Ost02] Klaus Ostermann. Dynamically Composable Collab-
orations with Delegation Layers. In Proceedings of
the 16th European Conference on Object-Oriented
Programming, Malaga, Spain, 2002.

[OZ05] Martin Odersky and Matthias Zenger. Inde-
pendently extensible solutions to the expression
problem. In Proc. FOOL 12, January 2005.
http://homepages.inf.ed.ac.uk/wadler/fool.

[RV00] Didier Rémy and Jérôme Vuillon. On the
(un)reality of virtual types. available from
http://pauillac.inria.fr/remy/work/virtual, March
2000.

[SC00] Joao Costa Seco and Luís Caires. A basic model of
typed components. In Proceedings of the 14th Euro-
pean Conference on Object-Oriented Programming,
pages 108–128, 2000.

[SDNB03] Nathanael Schärli, Stéphane Ducasse, Oscar Nier-
strasz, and Andrew Black. Traits: Composable
Units of Behavior. In Proceedings of the 17th Euro-
pean Conference on Object-Oriented Programming,
Darmstadt, Germany, June 2003.

[Szy98] Clemens Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison Wesley /
ACM Press, New York, 1998. ISBN 0-201-17888-5.

[Tho97] Kresten Krab Thorup. Genericity in java with virtual
types. In Proc. ECOOP ’97, LNCS 1241, pages 444–
471, June 1997.

[Tor04] Mads Torgersen. The expression problem revisited
— Four new solutions using generics. In Proceedings
of the 18th European Conference on Object-Oriented
Programming, Oslo, Norway, June 2004.

[Wit03] Andreas Wittmann. Towards Caesar: Family poly-
morphism for Java. Master’s thesis, Technische Uni-
versität Darmstadt, Fachbereich Informatik, 2003.

[Zen98] Matthias Zenger. Erweiterbare Übersetzer. Master’s
thesis, University of Karlsruhe, August 1998.

[Zen02] Matthias Zenger. Type-Safe Prototype-Based Com-
ponent Evolution. In Proceedings of the Euro-
pean Conference on Object-Oriented Programming,
Málaga, Spain, June 2002.

[Zen04a] Matthias Zenger. Keris: Evolving software with ex-
tensible modules. To appear in Journal of Software
Maintenance and Evolution: Research and Practice
(Special Issue on USE), 2004.

[Zen04b] Matthias Zenger. Programming Language Abstrac-
tions for Extensible Software Components. PhD the-
sis, Department of Computer Science, EPFL, Lau-
sanne, March 2004.

[ZO01] Matthias Zenger and Martin Odersky. Implementing
extensible compilers. In ECOOP Workshop on Mul-
tiparadigm Programming with Object-Oriented Lan-
guages, Budapest, Hungary, June 2001.

	Introduction
	Language Constructs for Component Abstraction and Composition
	Abstract Type Members
	Symmetric Mixin Composition
	Selftype Annotations
	Service-Oriented Component Model

	Case Study: Subject/Observer
	Case Study: The Scala Compiler
	Discussion
	Conclusion

