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Abstract. Component-based programming is currently carried out us-
ing mainstream object-oriented languages. These languages have to
be used in a highly disciplined way to guarantee flexible component
composition and extensibility. This paper investigates abstractions for
component-oriented programming on the programming language level.
We propose a simple prototype-based model for first-class components
on top of a class-based object-oriented language. The model is formalized
as an extension of Featherweight Java. Our calculus includes a minimal
set of primitives to dynamically build, extend, and compose software
components, while supporting features like explicit context dependen-
cies, late composition, unanticipated component extensibility, and strong
encapsulation. We present a type system for our calculus that ensures
type-safe component definition, composition, and evolution.

1 Introduction

Component-based software development techniques gain increasing attention in
industry and research. Component technology is driven by the promise of soft-
ware reuse and plug-and-play programming. This promise poses high demands
on the implementation platform.

Currently, component-based programming is carried out using mainstream
object-oriented languages. Object-oriented languages seem to promote compo-
nent-based programming well: They support encapsulation of state and behavior,
inheritance and overriding enable extensibility, and subtype polymorphism and
late binding allow flexible reuse of objects and classes. Unfortunately, object-
oriented techniques alone are not powerful enough to provide flexible and type-
safe component composition and evolution mechanisms.

Therefore, industrial component models like CORBA [27], COM [46], or
JavaBeans [33] rely on additional concepts, namely component frameworks and
meta-programming. They provide a class framework for modeling components
and component interactions together with an informal set of implementation
rules. Components are composed using meta-programming technology like re-
flection. This ad-hoc approach yields a dynamic and flexible composition mech-
anism, but often does not guarantee any static type security. Furthermore, the
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degree of extensibility depends on the framework or the meta-programming tools.
In general, it has to be planned ahead, for instance by using suitable design pat-
terns typically derived from the AbstractFactory pattern [22]. This lack of unan-
ticipated extensibility hinders a smooth software evolution process substantially.

Another issue was recently pointed out by Aldrich and Chambers [2]. They
observe that implementation languages are only loosely coupled to architectural
descriptions. As a consequence, specifications of software architectures [44,50]
formally expressed in architecture description languages [40] are often quite dif-
ferent from the actual object-oriented implementations. This makes it difficult to
trace architectural properties in the implementation, which would allow to verify
that an implementation is consistent with the corresponding architecture [2].

This is why recently various proposals have been put forward to integrate
concepts known from architecture description languages into object-oriented pro-
gramming languages [49,52,2]. These so-called component-oriented programming
languages offer linguistic facilities for programming software components, for
defining component interactions, and for composing software from components.
Their promise is to do that in a type-safe way, ruling out illegal interaction
patterns.

In this paper we study linguistic abstractions for component-oriented pro-
gramming in the context of object-oriented programming languages. We de-
scribe the notion of prototype-based components. Our prototype-based com-
ponent model is designed to support plug-and-play programming. It features
lightweight components that can be dynamically manufactured and composed
in a type-safe way. We emphasize the necessity for a smooth component adap-
tion and evolution process. In particular, we allow to derive refined components
from existing components without sacrificing consistency and type-safety. We
present a formalization of our prototype-based component model as an exten-
sion of Featherweight Java [32,45]. Our typed calculus includes a minimal set of
primitives to build, extend, and compose software components, while support-
ing principles like explicit context dependencies, late composition, unanticipated
component extensibility, and strong encapsulation of component services.

We proceed by motivating the design principles of our component model.
Section 2 emphasizes the importance of software adaptability, extensibility, and
software evolution in general. Section 3 introduces prototype-based components
by example, presenting the various component refinement primitives. A formal-
ization of the model is presented in Section 4 in form of a core component calcu-
lus. We present a type system and prove that this system is sound with respect
to the given operational semantics. A summary of the main features together
with a discussion of related work is given in Section 5.2. Section 6 concludes.

2 Motivation

In this section we motivate specific design principles of our prototype-based
component model. The main features of the model include:



472 Matthias Zenger

1. Components are first-class core language abstractions,
2. composition operators enable coarse-grained component composition,
3. components can be manufactured and composed dynamically (late compo-

sition),
4. components are extensible, promoting component reuse, adaptability, and

evolution.

Furthermore, our model adopts principles common among component-oriented
languages, like explicit context dependencies (external linking), cyclic component
linking, and strong encapsulation. Component manufacturing, composition, and
refinement are type-safe. Our type system supports subtype polymorphism for
components and component instances.

2.1 Language Integration

The introduction motivated already the need for specific component abstrac-
tions, directly integrated into the core of programming languages. With an ex-
plicit language construct for components, a programmer can implement architec-
ture descriptions directly without the need for finding a suitable representation
in a particular programming language.

2.2 Coarse-Grained Composition

Existing proposals for component abstractions on the programming language
level like ComponentJ [49], ACOEL [52], and ArchJava [2] directly adopt com-
mon concepts and principles of architecture description languages. They provide
constructs for manufacturing components with required and provided services.
A service associates a port name with a type. Components are composed by
linking ports with explicit plug instructions. The type system ensures that all
ports are linked and that links are established only between compatible ports or
service providers.

This approach does not scale, since for linking a component with n services,
we have to issue n explicit plug instructions specifying the wiring of the com-
ponent. For large-scale components with a lot of services involved, linking the
component is a tedious and error-prone task. Furthermore, the sequence of plug
instructions rather obscures the architecture of the system instead of making it
explicit. Therefore, McDirmid, Flatt, and Hsieh argue that component systems
should offer the possibility to connect many required and provided services at
once [39].

We address this requirement by simplifying the interface of components and
by providing means to infer the wiring of components to be linked together. Com-
ponents can be composed with simple operators and without explicitly plugging
ports. We also support incremental linking; i.e. we allow that components get
only partially linked. For instance, components can be sent around in a dis-
tributed system and only the services available at a specific location get linked
until in the end we have a fully linked component that can be instantiated.
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2.3 Dynamic Manufacturing and Composition

Software component technology distinguishes two main tasks: component man-
ufacturing and component composition. It is often explained that both tasks are
separate steps being performed one after the other. But in practice, both tasks
coincide when new components are built by composing other components. This
form of component manufacturing is called hierarchical component composition.

Often it is assumed that component manufacturing is done statically be-
fore component composition takes place. Component composition itself cannot
always be performed statically in cases where components are only known at
runtime. Therefore component-based systems have to support some form of dy-
namic linking.

This observation implies that we also have to be able to manufacture software
components dynamically, since component linking and manufacturing coincide
in hierarchical component compositions. Thus, it makes no sense to assume that
both manufacturing and composition are atomic tasks that are performed con-
secutively. In highly dynamic systems, component manufacturing and composi-
tion is rather an interleaved process in which components are created and linked
incrementally.

2.4 Reuse, Adaption, Evolution and Extension

When using components from external vendors, it is quite unlikely that the
interfaces of these third-party components fit to the required interfaces off-the-
shelf. It is often necessary to adapt components before they can be used in a
particular system [30,43]. As Section 2.3 already pointed out, components might
only be supplied at runtime, therefore it is even more necessary that components
can be adapted dynamically on-the-fly.

In a prototype-based component model, new components can only be created
by refining an already existing component. As a consequence, we can derive two
different components from a single base component. By doing this, we factor
out potential reusable pieces, avoiding duplicated programming effort. In addi-
tion, this technique supports software evolution. Software evolution includes the
maintenance and extension of component features and interfaces. Supporting
software evolution is important, since components and component systems are
architectural building blocks and as such, subject to continuous changes.

Extensibility of components [53] is not only required for a smooth component
evolution. It is even more desired for enabling the development of families of
software applications and product-lines in general. Traditionally, components
are static black-boxes emphasizing encapsulation over extensibility. Features can
be added to components only by creating a new component that forwards all
existing services to the old version in addition to the new services. This is a
cumbersome and error-prone procedure that duplicates programming efforts and
complicates maintenance.
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3 Introduction to Prototype-Based Components

In this section we describe prototype-based components in the context of a small,
statically typed, object-oriented Java-like base language. Our component model
relies on a nominal type system [45] of the base language. In nominal type
systems, two types with the same structure but a different name are considered to
be different, as opposed to structural type systems that match the structure and
not the name. Prototype-based components do not rely on other base language
features like inheritance or even classes, even though we present them here in
a class-based context. Therefore it should be straightforward to add prototype-
based components to other object-oriented languages with nominal object types.

3.1 Components and Component Instances

In our model, a component is a unit of computation that can be accessed through
a well-defined interface. A component is a first-class citizen. Its interface speci-
fies the services it provides to allow other components to interact with it. The
interface also specifies the services a component requires from other components
to be able to provide the own services.

Our component model is prototype-based; i.e. the only way to create a new
component is by refining an already existing prototypical component. For boot-
strapping purposes, we have a single predefined component that does not pro-
vide or require any services. This empty component is denoted by the keyword
component.

We strictly distinguish components from component instances. A compo-
nent describes a template for possibly multiple component instances. It is the
component instances that provide the actual services. Services are described by
object types, e.g. types defined by classes or interfaces. Objects serve as service
providers. They usually get created at component instantiation time. Therefore,
components can be seen as organizational units with well-defined interfaces that
structure object interdependencies. Components have neither a unique identity,
nor an observable state. They come to life through objects at the time they get
instantiated.

In the remainder of this section we introduce prototype-based components
by example. We derive some simple software components that could be used, for
instance, in online retail stores to manage stock and clients.

3.2 Service Provision

We start by manufacturing a software component that provides access to a cus-
tomer database. We want every customer to have a unique client number. A
service that maps customer names to client numbers could be described by the
following interface definition:

interface CustomerIDs {
int lookupId(String name);

}
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Fig. 1. Schematic notation for prototype-based components

The CustomerIDs interface consists of a single method lookupId. Given a cus-
tomer’s name, this method tries to find the corresponding client number. If
there is no client number yet for this customer, a new number will be issued
and returned by lookupId. Imagine we have the following implementation of the
CustomerIDs interface:

class MyCustomerIDs implements CustomerIDs {
MyCustomerIDs() { ... }
int lookupId(String name) { ... }
...

}
With this implementation we are able to manufacture a software component
that provides a CustomerIDs service. Since we can only create new components
by refining existing ones, we have to take the empty component as a prototype
and refine it such that it provides a CustomerIDs service. In our calculus, this
is done with the provides primitive:

c0 = component
provides CustomerIDs as This with new MyCustomerIDs();

The clause d provides C as x with e returns a new component that refines
component d by providing some possibly new services C. These services are im-
plemented by an object specified with expression e. Note that we are extending
a component here. Therefore, expression e only gets evaluated at component in-
stantiation time. x is a variable that gets bound to the own component instance.
In object-oriented languages this self reference corresponds to variable this or
self referring to the own object. Only expression e is in the scope of x. Typically,
expression e refers to other services of the own component instance via x.

We use a graphical notation to illustrate the structure of components. Fig-
ure 1 gives an overview. Here, a component is represented by a box. The gray
part corresponds to the prototype of the component, the white part specifies
the refinement. In our graphical notation, services are symbolized by diamonds.
Objects are simply black dots. An arrow from a service to an object expresses
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Fig. 2. Component evolution

that this object implements the service. We also have outlined arrows that depict
service dependencies. These dependencies are not explicit in our calculus. If an
object refers to other services, for instance via the self reference, then every such
dependency is specified with an outlined arrow. Figure 2 shows the structure of
our previously defined component c0.

3.3 Component Instantiation

We already pointed out that components have to be instantiated before services
can be accessed. In our component calculus, a component gets instantiated with
the new primitive.

i0 = new c0;

The services of a component instance like i0 get accessed via the service selection
operator ::. The expression e :: C selects a service C from component instance
e. C is a type name that identifies a service and at the same time describes the
service’s interface. Other component models refer to services via named ports. In
these models it is possible to have two distinct ports with the same interface type
but different port names. In programming languages with nominal type systems
like Java [26] or C# [28], types do not only define structural object properties
like available methods or fields. They also stand for semantic specifications [14],
and as such, they are well-suited for specifying roles. In those type systems it
is possible to have two distinct types with the same interface description but
different type names. Therefore, it is no restriction to describe a service only by
its type without having a port name in addition. This simplifies the definition
of components and the service access in general significantly. It also acts as a
standardization of port names. One only has to know a service’s type in order
to access it from a component instance. It is not necessary to lookup the port
name in the component specification. We will see later in Section 3.7 that this
standardization of component port names has another advantage: it promotes
automatic composition mechanisms. Of course, in the few cases where two ports
could share a type, we have to create new type names and in the worst case use
wrappers to adapt existing objects.
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Here is an example demonstrating the usage of the component i0. In this
example we call the lookupId method of the CustomerIDs service provided by
component instance i0.

i0 ::CustomerIDs.lookupId(”John Smith”);

3.4 Component Refinement

Now imagine the requirements for our customer administration component c0 are
changing and we also need the capability to store customer names and addresses.
We can describe this new database service with the following interface:

interface CustomerDB {
void enter(String name, String address);
String lookupName(int id);
String lookupAddr(int id);

}
Method enter stores a new address in the database. Whenever a new customer
is entered, a new client number will automatically be assigned to this new cus-
tomer. The methods lookupName and lookupAddr find a name or address for
a given client number. The following class implements CustomerDB. It depends
on a component instance that provides a CustomerIDs service. This component
instance is passed as a parameter to the constructor. Following [49], we use the
notation [S1, ..., Sn] to specify the type for component instances supporting at
least the services S1 to Sn.

class MyCustomerDB implements CustomerDB {
[CustomerIDs] This;
MyCustomerDB([CustomerIDs] This) {

this .This = This;
}
... This::CustomerIDs.lookupId(name) ...

}
We already mentioned that prototype-based components offer a smooth compo-
nent evolution mechanism. For creating an extended version of a component, we
just have to interpret the old component as a prototype. In our example, the
new refined component evolves out of the old one simply by an application of
the provides primitive. The following code refines component c0 by additionally
providing the service CustomerDB.

c1 = c0 provides CustomerDB as This with new MyCustomerDB(This);

The provides primitive can also be used to refine a component by defining
a new service implementation for an already provided service. In this case we
override the old implementation. Here is the definition of component c2 that
refines c1 by using, for instance, a more efficient client numbering service.

c2 = c1 provides CustomerIDs as This with new EfficientCustomerIDs();
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Fig. 3. Service forwarding

The service implementation for CustomerDB, specified already in the prototype
of c2, now automatically refers to this new numbering service implementation.
A graphical illustration of components c1 and c2 can be found in Figure 2.

3.5 Service Forwarding

Until now, we are only able to develop new components by adding new services
or by overriding existing service implementations of a prototypical component.
Every service we add gets exported automatically; i.e. it can be accessed from
outside the component. This white-box approach is necessary to keep the com-
ponent extensible, because it allows us to override service implementations and
to add new service implementations that refer to already existing services. But
often we do not want to publish internally used services. Being able to hide in-
ternal interfaces is an important feature of component-oriented programming.
Our component calculus supports this form of encapsulation with the component
projection operator forwards. The clause d forwards C as x to e extends compo-
nent prototype d with the services C. The new component forwards accesses
of these services to the component instance e. Expression e can refer to other
services of the own component instance via the self reference x. This primitive
is primarily used for hierarchical component compositions. In the following ex-
ample it is specifically used to hide services and service interconnections. Thus,
it turns a “white-box” into a “black-box” by wrapping the original component.

c3 = component
forwards CustomerDB as This to new c2;

In this example we create a new component c3 that only provides a single service
CustomerDB by forwarding calls to a component instance of c2. Thus, we hide
the CustomerIDs service of component c2. We say, an instance of c2 is nested
inside every instance of component c3. We call the hidden CustomerIDs service
an internal service of component c3. An illustration of c3 instances can be found
in Figure 3. Here, the instance of component c2 that is contained in c3 is depicted
by a nested box. Service implementations are now arrows pointing from external
services to internal services of nested component instances.
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3.6 Service Abstraction

The previous sections showed how to evolve a component by incrementally
adding new services either by a new service implementation or by forwarding
services to a nested component instance. In both cases we introduced new ser-
vices and implementations for these services at the same time. This approach
does not allow us to write components that depend on services provided by other
components. Furthermore, we are not even able to define two services where
service implementations depend mutually on each other, because we introduce
services linearly, one after the other.

We tackle both problems with a service abstraction facility. Before going into
detail, we proceed by manufacturing a new component for handling orders of a
shop. The service for placing orders is described by the following interface:

interface OrderDB {
void order(int id , String article , int num);

}
With method order, new orders can be placed. Orders consists of a client number,
an article descriptor and the number of items to deliver. If possible, this method
tries to execute the order immediately. Therefore it needs access to a stock
database service specified by the following interface:

interface StockDB {
void enter(String article , int num);
void remove(String article, int num);
int available(String article );

}
Method order checks if the articles are available. If this is the case, it removes
them from the stock database and sends the articles to the customer’s address.
Therefore, service implementations of OrderDB like MyOrderDB also need ac-
cess to the CustomerDB service. Thus, the constructor of the following class
expects a component instance providing StockDB and CustomerDB services.

class MyOrderDB implements OrderDB {
[StockDB, CustomerDB] This;
MyOrderDB([StockDB, CustomerDB] This) {

this .This = This;
}
...

}
Since we do not want our order system component to already commit to a

specific service implementation for the StockDB and the CustomerDB service,
we have to factor out these two services. In order to make use of the component
later, we then either have to provide the missing service implementations from
outside at composition time, or we further refine the component and provide
service implementations from inside the component.
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Fig. 4. Service abstraction

In our component calculus, services are factored out with the service abstrac-
tion primitive requires. The requires primitive allows to define services that are re-
quired for implementing other services without the need for specifying a concrete
service implementation. We make use of this abstraction facility in the following
implementation of component d0 which requires two services CustomerDB and
StockDB and provides a OrderDB service. Figure 4 contains an illustration of
component d0.

d0 = component
requires CustomerDB
requires StockDB
provides OrderDB as This with new MyOrderDB(This);

The expression d requires C takes a prototypical component d and returns a
refined version with a service C that has to be provided before the component
can be instantiated. Other service implementations can refer to this service, even
though there is no implementation known yet. This is why in the example above,
self reference This has type [CustomerDB, StockDB, OrderDB] and thus is a le-
gal parameter for the constructor of MyOrderDB. Components have a type of
the form (R1, . . . , Rn ⇒ P1, . . . , Pm) where R1 to Rn are services required by the
component, and P1 to Pm are the provided services. Thus, the type of compo-
nent d0 is (CustomerDB, StockDB ⇒ OrderDB). As already mentioned before,
component d0 cannot be instantiated, since not all service provisions are resolved
yet. We first have to derive a new component that specifies implementations for
all required services before we can actually create component instances.

We continue in our example by defining a new component e0 that provides
an implementation for a StockDB service.

e0 = component
requires OrderDB
provides StockDB as This with new MyStockDB(This);

The implementation of service StockDB makes use of an externally supplied
OrderDB service. This is, because in cases where new stock arrives and orders
are still pending, it would trigger the process of sending out the articles. The
type of component e0 is (OrderDB ⇒ StockDB).
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Fig. 5. Component composition

3.7 Component Composition

In the previous section we defined two components d0 and e0 that mutually refer
to each other; i.e. the service provided by one component is required by the other
one. We would now like to link these two components together yielding a com-
ponent which only requires a CustomerDB service and provides both a OrderDB
and a StockDB service. The simplest way to achieve this is to refine component
d0 with an implementation for service StockDB. This service is provided by a
refined version of e0 that refers back to the OrderDB service provided by the
enclosing d0 prototype.

f0 = d0 provides StockDB as This with
(new (e0 provides OrderDB as Me with This::OrderDB))::StockDB

This technique does not work for components where more than two services de-
pend mutual recursively on each other. For such cases we have to use the forwards
primitive in order to link the components together. A graphical illustration of
the resulting component f1 can be found in Figure 5.

f1 = d0 forwards StockDB as This to
new (e0 provides OrderDB as Me with This::OrderDB)

The previously discussed composition schemes use service forwarding where
the nested component instance refers back to services provided by the enclosing
component being defined. Our component calculus offers an alternative to this
rather complicated composition pattern. With the mixin operator it is possi-
ble to create a new component by mixing in the services provided by another
component. The expression e mixin d refines the prototypical component e with
component d; i.e. e gets refined by including all the services provided by com-
ponent d. Services that are already present in e are automatically overridden by
the corresponding services of d. This operation identifies the self references of
both components e and d by binding it to the resulting merged component. The
resulting component requires services that are either required by e or d and that
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are not provided by any of the two components. It provides all the services that
are provided by either e or d. Thus, the following expression yields a component
f2 of type (CustomerDB ⇒ OrderDB, StockDB).

f2 = d0 mixin e0

When using such a mixin-based composition scheme, one has to be aware that for
the expression above, all services e0 provides get mixed in, no matter what static
type e0 has in this context. Thus, we might accidentally override services pro-
vided by d0. Sometimes this is desired, for instance, when we want to express that
e0 has got the more recent or more trustworthy service implementations than d0.
For cases where we want to define explicitly what services to override, we have to
use a forwarding-based composition scheme instead. For instance, we could write
d0 forwards StockDB as This to new (e0 forwards OrderDB as Me to This).

All three components defined in this section are equivalent in the sense that
they provide and require the same services and that services are implemented by
the same objects. Though, Figure 5 reveals that the internal structure of com-
ponents manufactured using the forwarding and the mixin technique are quite
different. Therefore, they may behave differently when it comes to refinements
of both components. In the given example, this is not the case. But one might
imagine a bigger nested component instance where overriding a service of the
enclosing component does not have any effect on the formerly forwarded ser-
vice of the nested component, while it would have an effect on the mixin-based
approach.

We finish this section by manufacturing a component that permits access
to customer related services only; i.e. CustomerDB and OrderDB. We do this
by first linking together the customer management component c2 and the stock
management component f2. The linked component c2 mixin f2 provides all the
various services introduced in this section. Since we want to restrict the access
to customer related services, we have to project the resulting component to a
new component g0 offering only the desired services.

g0 = component
forwards CustomerDB, OrderDB as This to new (c2 mixin f2)

g0 has type ( ⇒ CustomerDB, OrderDB); thus, it is possible to instantiate this
component. The structure of an instance of our final component g0 is presented
in Figure 6. Leaving out some intermediate steps, we could have composed g0
out of three essential components: c2 which administers clients, d0 which handles
orders, and e0 which manages the stock.

g0 = component
forwards CustomerDB, OrderDB as This to new (c2 mixin d0 mixin e0)

This short expression demonstrates how concise component manufacturing and
linking is in our model. Furthermore it outlines how components are typically
deployed. The sub-expression c2 mixin d0 mixin e01 first links components c2,

1 Please note that the mixin operator is associative.
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d0, and e0, yielding a single extensible component. This component exposes
internal interfaces. We might want that, for instance to use this component as
a basis for further refinements. But before instantiating (or even selling) it, we
should hide the internals by wrapping the component in a black-box only offering
specific functionality with restricted support for extensibility. In the example
above, this is done using the component projection primitive forwards.

4 Component Calculus

In this section we present a formalization of our prototype-based component
model for a functional subset of Java. Our calculus is built on top of Feather-
weight Java (FJ ) [32]. We omit type casts from the original calculus since type
casts are irrelevant for our application and complicate the formal treatment un-
necessarily.

4.1 Syntax

The syntax of the calculus is presented in Figure 7. Like in FJ, a program consists
of a collection of class declarations plus an expression to be evaluated. The syntax
of classes, constructors, and methods is identical to FJ. We only extend the set
of expressions with the primitives introduced in Section 3. In particular, we
add an empty component, a service abstraction and implementation primitive,
a component projection primitive as well as a component mixin operator. In
addition, we have a construct for instantiating components and a service selection
operator for accessing services from a component instance. In our calculus, a
service is characterized by a class name.

Opposed to the presentation in Section 3.2, the calculus only supports a
provides primitive that introduces a single service. This is no restriction since we



484 Matthias Zenger

Program P = L ; e program

Class L = class C extends C { T f ; K ; M } class declaration

Constructor K = C(T f) { super(f); this.f = f ; } constructor declaration

Method M = T m(T x) { return e; } method declaration

Expressions e = x variable
| e.f field selection
| e.m(e) method invocation
| new C(e) object creation
| component empty component
| e requires C service abstraction
| e provides C as x with e service implementation
| e forwards C as x to e component projection
| e mixin e component mixin
| new e component instantiation
| e :: C service selection

Types T = C object type
| C ⇒ C component type
| [C] component instance type

Fig. 7. Syntax

can easily model the former semantics by using the more general forwards con-
struct in combination with a nested component that implements several services
with a single object.

FJ ’s types only consist of class names. For simplicity, Java’s interface types
are not modeled. For working with components and component instances we
also need syntactical forms for expressing component and component instance
types. Please note that compared to the explanations in Section 3.6, we use a
slightly simplified syntax for component types without enclosing parenthesis. As
in FJ, we write T as a shortcut for T1, . . . , Tn. We use similar shorthands for
sequences like C, f, e, etc. as well as for pairs of sequences like T f . Such a pair
of sequences is a shorthand for T1 f1, . . . , Tn fn.

We assume that sequences of field declarations, parameter names, and method
declarations do not contain duplicate names. Furthermore, the service implemen-
tation and the component projection operators always introduce fresh names for
their self reference variable. For the presentation of the operational semantics
in the next section we assume to apply alpha-renaming whenever necessary to
avoid name capture.

4.2 Semantics

The semantics of our calculus are formalized in Figure 8 as a small-step opera-
tional semantics. The reduction relation has the form e −→ e′ which expresses
that expression e evaluates to expression e′ in a single step.
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(R-Fld)
fields(C) = T f

new C(e).fi −→ ei

(R-Serv)
service(new e, e, C) = e′

new e :: C −→ e′

(R-Inv)
mbody(m,C) = (x, e0)

new C(e).m(d) −→ [d/x, new C(e)/this] e0

(R-Req) e requires C −→ e (R-MixC) e mixin component −→ e

(R-MixP) e mixin (e0 provides C as x with d) −→ (e mixin e0) provides C as x with d

(R-MixF) e mixin (e0 forwards C as x to d) −→ (e mixin e0) forwards C as x to d

(RC-Fld)
e −→ e′

e.f −→ e′.f
(RC-InvR)

e −→ e′

e.m(d) −→ e′.m(d)

(RC-InvA)
ei −→ e′i

d.m(. . ., ei, . . .) −→ d.m(. . ., e′i, . . .)

(RC-NewA)
ei −→ e′i

new C(. . ., ei, . . .) −→ new C(. . ., e′i, . . .)

(RC-Inst)
e −→ e′

new e −→ new e′
(RC-Serv)

e −→ e′

e :: C −→ e′ :: C

(RC-Prv)
e −→ e′

e provides C as x with d −→ e′ provides C as x with d

(RC-Fwd)
e −→ e′

e forwards C as x to d −→ e′ forwards C as x to d

(RC-MixL)
e −→ e′

e mixin d −→ e′ mixin d
(RC-MixR)

d −→ d′

e mixin d −→ e mixin d′

Fig. 8. Operational semantics

We adopt all reduction rules from FJ and define various new rules for our
new syntactical constructs. Service abstractions simply reduce to the prototype
component, so they do not have any computational effect. The semantics of
mixins are described by three reduction rules, depending on the form of the right
operand. Mixing in the empty component results in the same component. For
service implementations and component projections we mix the prototype of the
right operand into the left operand and apply the component refinement on that
new component. Thus, we incrementally combine the two operands into a single
component where service definitions of the right operand override definitions of
the left operand.

The reduction rule for service selections relies on an auxiliary function
service(e′, e, C) which searches the component definition e of component instance
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Field lookup

fields(Object) = ∅
CT (C) = class C extends D { T f ; K ; M } fields(D) = U g

fields(C) = U g, T f

Method body lookup

CT (C) = class C extends D { U f ; K ; M } T ′ m(T x) { return e; } ∈ M

mbody(m,C) = (x, e)

CT (C) = class C extends D { T f ; K ; M } m not defined in M

mbody(m, C) = mbody(m, D)

Service lookup

service(e, e0 provides C as x with d, C) = [e/x] d

service(e, e0 forwards C as x to d,Ci) = [e/x] d :: Ci

D �= C

service(e, e0 provides C as x with d, D) = service(e, e0, D)

D �∈ C

service(e, e0 forwards C as x to d, D) = service(e, e0, D)

Fig. 9. Auxiliary definitions for evaluation

e′ for a service C. Note that the service lookup performed by service(e′, e, C) is
only defined on service implementation and component projection terms. Thus,
even for cases where e provides a service C, evaluation of service(e′, e, C) may
not be well-defined if e has not been evaluated far enough. In such a case, we first
have to apply rules (RC-Inst) and (RC-Serv) to further evaluate the component
before making use of the actual service selection rule (R-Serv). An overview of
all auxiliary definitions used by the operational semantics of Figure 8 are given
in Figure 9.

4.3 Type System

We have three different forms of types: object types, component types and com-
ponent instance types. An object type is simply denoted by a class name C. An
object type is well-formed if the class name appears in the domain of the class
table CT . The class table is a mapping from class names to class declarations. As
in the presentation of FJ, we assume that we have a fixed class table to simplify
the notation. Otherwise we would have to parameterize all typing rules with CT .
It is assumed that CT satisfies some sanity conditions: Object �∈ dom(CT ), all
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Well-formed types

Object wf
CT (C) = class C extends D {. . .}

C wf
C, C′ wf C ∩ C′ = ∅

C ⇒ C′ wf
C wf
[C] wf

Subtyping

C <: C
C <: D D <: E

C <: E

CT (C) = class C extends D {. . .}
C <: D

C ⊆ D D′ ⊆ C′

C ⇒ C′ <: D ⇒ D′
D ⊆ C

[C] <: [D]

Fig. 10. Well-formed types and subtyping

types appearing explicitly in CT are well-formed, and there are no cycles in the
subtype relation induced by CT .

Component types have the form C ⇒ C ′ where C specifies the services
required by the component and C ′ specifies the provided services. Services are
described by object types. A component type is only well-formed if the sets of
the provided and required services are disjoint. [C] types a component instance
that provides the services C. Figure 10 summarizes the well-formedness criteria
on types.

Method types cannot be written explicitly. In the type system, we use the
notation T → T ′ for a method with the argument types T and the result type
T ′. Note that depending on the context, T denotes either a sequence of types
(T1, . . . , Tn) or a set of types {T1, . . . , Tn}. We use shorthands of the form C ∪D
for expressing C ∪ {D}.

Figure 10 also defines a subtype relation T <: T ′ between two types T and
T ′. Subtyping of object types is identical to FJ. A component instance type is
a subtype of another component instance type if the services provided by the
supertype constitute a subset of the subtype’s provided services. A component
type τ1 = C ⇒ C ′ is a subtype of component type τ2 = D ⇒ D′, if τ1 requires
less and provides more services than τ2; i.e. C ⊆ D and D′ ⊆ C ′. This cor-
responds to the typical co/contravariant subtyping rule for function types [17]
adopted already by related approaches to component subtyping [20,49,25]. In
Section 4.6 we discuss an alternative subtyping rule.

The type system is presented in Figure 11. We have three different typing
judgment forms. The one for classes has the form “L ok” meaning that class
declaration L is type correct. The judgment for method declarations has the
form “M ok in C”, expressing that the method declaration M typechecks as a
declaration of class C. Both rules are directly taken from FJ. The judgment for
expressions Γ � e : T relates a type T to an expression e. Most typing rules
for expressions are straightforward. (T-Prv) and (T-Fwd) are among the inter-
esting rules. Here, the service provision expression is typed under an extended
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Expression typing

(T-Var) Γ � x : Γ (x) (T-Fld)
Γ � e : C fields(C) = T f

Γ � e.fi : Ti

(T-Inv)
Γ � d : C mtype(m, C) = T → T ′ Γ � e : U U <: T

Γ � d.m(e) : T ′

(T-New)
fields(C) = T f Γ � e : U U <: T

Γ � new C(e) : C

(T-Inst)
Γ � e : ∅ ⇒ C

Γ � new e : [C]
(T-Serv)

Γ � e : [C]
Γ � e :: Ci : Ci

(T-Com) Γ � component : ∅ ⇒ ∅

(T-Mix)
Γ � e : C ⇒ C′ Γ � d : D ⇒ D′

Γ � e mixin d : (C ∪ D)\(C′ ∪ D′) ⇒ C′ ∪ D′

(T-Req)
C wf Γ � e : D ⇒ D′

Γ � e requires C : D ∪ C ⇒ D′\C

(T-Prv)
C wf Γ � e : D ⇒ D′ Γ, x : [D ∪ D′ ∪ C] � d : B B <: C

Γ � e provides C as x with d : D\C ⇒ D′ ∪ C

(T-Fwd)
C wf Γ � e : D ⇒ D′ Γ, x : [D ∪ D′ ∪ C] � d : [B] C ⊆ B

Γ � e forwards C as x to d : D\C ⇒ D′ ∪ C

Method and class typing

(T-Meth)
T wf T ′ wf x : T , this : C � e : U U <: T ′

CT (C) = class C extends D {. . .} override(m, D, T → T ′)
T ′m(T x) { return e; } ok in C

(T-Class)
D wf T wf K = C(U g, T f) { super(g); this.f = f ; }

fields(D) = U g M ok in C

class C extends D {T f ; K; M } ok

Fig. 11. Type system

environment, including the self reference to the own component instance. We
assume that the type of the self reference variable is a component instance type
offering both, the services that are required and provided by the component be-
ing refined. The auxiliary definitions used for typing field and method selections
as well as object creations are directly adopted from FJ and summarized in
Figure 12.
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Method type lookup

CT (C) = class C extends D { U f ; K ; M } T ′m(T x) { return e; } ∈ M

mtype(m, C) = T → T ′

CT (C) = class C extends D { T f ; K ; M } m not defined in M

mtype(m, C) = mtype(m,D)

Valid method overriding

mtype(m,C) = U → U ′ implies U = T and U ′ = T ′

override(m,C, T → T ′)

Fig. 12. Auxiliary definitions for typing

4.4 Type Soundness

For proving type soundness, we weaken the typing rules for provides and forwards
terms. We use the following two rules (T-Prv’) and (T-Fwd’) instead:

(T-Prv’)
C wf Γ � e : D ⇒ D′ Γ, x : [D′′] � d : B B <: C

Γ � e provides C as x with d : (D ∪ D′′)\(D′ ∪ C) ⇒ D′ ∪ C

(T-Fwd’)
C wf Γ � e : D ⇒ D′ Γ, x : [D′′] � d : [B] C ⊆ B

Γ � e forwards C as x to d : (D ∪ D′′)\(D′ ∪ C) ⇒ D′ ∪ C

In this weaker system we allow that provides and forwards primitives introduce
service abstractions in a non-deterministic way. We show type soundness for this
weaker type system. As a consequence, the type system with the stronger typing
rules, presented in Figure 11, is sound as well. This system has the advantage
that typings are deterministic. Furthermore, its design follows the principle that
service abstractions have to be declared explicitly. Weakening the type system
was necessary for subject reduction to hold. We present the type soundness
results for our weaker type system in the style of Wright and Felleisen [56]. The
proof can be found in [57].

Theorem 4.1 (Subject reduction) If all types in Γ are well-formed, Γ �
e : T and e −→ e′, then Γ � e′ : T ′ for some T ′ <: T .

For a well-typed term which can be reduced to a second term, Theorem 4.1
states that this second term is also well-typed. Furthermore, the type of the
second term is a subtype of the type of the first term.

In addition to that we can show that the evaluation of every well-typed term
does not get stuck. To formalize this, we introduce a term subset denoting values.
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Value v = c
| new c
| new C(v)

Component value c = component
| c provides C as x with e

| c forwards C as x to e

A value is either a component, a component instance or an object. For component
values we have three different constructors. One denotes the empty component,
one adds a new service to an existing component value, and a third one adds
services by forwarding them to another component instance. Note that during
evaluation, service abstractions are eliminated in expressions with reduction rule
(R-Req). Therefore, the definition of component values does not include the
requires primitive.

Theorem 4.2 states that every well-typed term is either a value or it can
be reduced to another term. In other words, evaluation does not get stuck for
well-typed terms.

Theorem 4.2 (Progress) If � e : T then e is either a value or e −→ e′ for
some e′.

4.5 Component Instantiation Evaluation

The operational semantics presented in Figure 8 formalize an evaluation strat-
egy that does not allow to reduce service implementation expressions inside of
component instances. At component instantiation time, in fact none of these
terms get evaluated. A term specifying a service implementation, for example in
provides or forwards primitives, only gets evaluated when the service is accessed
via the :: operator. Evaluating a service implementation expression more than
once does no cause any problems in our calculus, since we only have functional
objects without any side-effects. In real-world systems, this form of lazy evalu-
ation can be efficiently implemented using a memoization technique, so that for
multiple accesses to the same service, the service implementation expression will
be evaluated only once.

We decided to have this restriction in our calculus for several reasons. First,
it keeps the calculus simple. But lazy evaluation also constitutes a reasonable
evaluation strategy for service implementations. A strict evaluation order would
be difficult to define. For instance we could evaluate the service implementations
in the order the component evolution primitives introduce a service. But this
would be a completely arbitrary choice, since services can be introduced using
the requires primitive in any order, not implying any dependencies.

With any fixed strict evaluation order one risks to access a not yet initialized
service from the service implementation that is currently being evaluated. With a
lazy service evaluation strategy one still faces this problem, but only for recursive
service references. With our operational semantics, such recursive dependencies
could possibly lead to infinite computations. We avoided this problem in the
examples of the previous sections by not accessing services of the own component
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instance in service provision expressions directly. Instead, objects that implement
a service access other services of the same component instance only at the time
a method of the other service actually has to be called, which happens typically
after the component got instantiated.

In [57] we present an extension of the operational semantics that supports
the reduction of service provision expressions at component instantiation time.

4.6 Component Subtyping

The subtyping rule presented so far only supports width-subtyping for compo-
nent types; i.e. subtypes provide more and require less services. We could relax
this rules easily by additionally supporting a form of depth-subtyping which in-
corporates subtyping of service interface types. Here, τ1 <: τ2 would hold for
two component types τ1 and τ2, if the required service types of τ1 are supertypes
of the required service types of τ2. Similarly, the provided service types of τ1
are supposed to be subtypes of the provided service types of τ2. Exactly this is
expressed by the following alternative subtyping rule:

∀i∃j : Dj <: Ci ∀i∃j : C′
j <: D′

i

C ⇒ C′ <: D ⇒ D′

To make use of such a rule in our type system, we would also have to update
the subtyping rule for component instances together with the typing rules (T-
Mix), (T-Req), (T-Prv), and (T-Fwd). Furthermore, the service lookup function
would have to be modified to reflect the fact that we can now override a service
by introducing a new service with a refined type.

5 Discussion and Related Work

Before concluding, we finally review the main ingredients of our component
model, explain design decisions, and compare the constructs with related work.

5.1 Prototype-Based Components Revisited

In our model, components are first-class abstractions that have neither state nor
identity. Components define the structure of component instances in the same
way as classes define the structure of objects. In most class-based languages,
classes are either not first-class, or they are specified using meta-classes. For
simplicity, and in order to avoid such a meta-regress [55], our first-class compo-
nents are prototype-based [1]. Thus, instead of instantiating components from
meta-component descriptions, new components are derived from prototypical
components by a set of refinement primitives. Since components are stateless,
we do not need a cloning operation known from object-based programming lan-
guages [18,55]. This approach emphasizes the reuse of components in the creation
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of new, extended components by refinement. In fact, even component composi-
tion, which is mostly regarded as the only form of component reuse, is explained
in terms of component refinement.

Components specify implementations for a set of provided services. These im-
plementations may rely on services provided by other components. Thus, compo-
nent types are characterized by a set of required and provided services. Services
are described by nominal object types. In Section 3.3 we explained already why
this approach does not constitute a restriction compared to component models
with named ports [49,52,2]. Our service abstraction does not only allow us to
conveniently refer to an aggregate of functionality, opposed to individual meth-
ods, for instance. It also facilitates to override an aggregate of functionality
consistently and promotes distinct, non-interfering views of components. Service
specifications that are solely based on nominal object types were inspired by
COM [46,31].

Services are added to a component using the service abstraction and ser-
vice implementation primitives. For composing components, two mechanisms
are supported: forwarding and mixin-based composition. Forwarding delegates
the implementation of a set of services to another, possibly nested component
instance. The significance of the forwarding primitive is two-fold: On the one
hand it enables hierarchical component compositions, on the other hand, it is
used to hide internal services of encapsulated components.

Opposed to forwarding, the mixin-based approach merges two components
by refining one component with the services provided by another component and
by rebinding the self reference to the merged component. Compared with the
approach based on forwarding where the services of the nested component cannot
be overridden and are therefore statically linked, component composition based
on mixins yields a fully extensible component where it is possible to redefine
service implementations by overriding. On the other hand, forwarding allows us
to specify exactly what services to include, opposed to the mixin-based approach
which always mixes in all provided services. As mentioned already in Section 3.7,
this may lead to accidental overrides. This weakness of our type system could be
addressed, for example, by making overriding explicit and by including negative
information in component types. Discussions about forwarding versus delegation
(object-based inheritance), which can be seen as an implementation technique
for mixins, can be found, for instance, in [54,34,15]. Support for dynamic object-
based inheritance in a class-based context is provided by Büchi’s and Weck’s
generic wrappers [15] and Kniesel’s object model Darwin [34].

Mixins were first identified as linguistic abstractions for generalizing inheri-
tance by Bracha and Cook [11]. It was also Bracha who observed that inheritance
can be seen as a mechanism for modular program composition [13]. With his work
on the programming language Jigsaw [10], he lifts the notion of class-based in-
heritance and overriding to the level of modules.

A formal account of mixins and mixin-based inheritance is given in [9,21,4]. In
particular, Bono, Patel, and Shmatikov’s calculus of first-class classes and mixins
is similar to our work [9]. Bono’s mixins correspond to components in our model.
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Classes correspond roughly to components without required services. Based on
the same framework, Bettini, Bono, and Venneri recently showed that mixins
are a suitable abstraction for mobile software components [8]. Opposed to the
work by Bono et al., the programming language Scala [42] does not distinguish
between classes and mixins. It only has the notion of classes that are interpreted
as mixins when used in mixin-based class compositions (inheritance). This is
identical to the way we interpret components. Scala’s mixins were inspired by
Strongtalk [12], an extension of the programming language Smalltalk.

5.2 Related Work

Our work is strongly related to alternative proposals for component abstractions
on the level of programming languages. Seco and Caires describe ComponentJ,
a simple typed imperative core calculus for first-class components in the context
of inheritance-free object-oriented programming [49]. ComponentJ completely
avoids inheritance in favor of object composition. Components are closed black-
boxes that can be dynamically composed.

ACOEL has a similar component model [52]. Interaction points of ACOEL
components are in- and out-ports. The language is class-based and supports a
restricted form of inheritance. Like in ComponentJ, ports are connected explic-
itly. Opposed to ComponentJ, the design of ACOEL does not allow to check that
all ports are connected. ACOEL supports a richer form of component subtyping,
including other constraints, specified in CORAL, a language for abstracting and
specifying ACOEL components [51].

ArchJava is an extension of Java that tries to unify the software architec-
ture of a system with its implementation [2]. It introduces direct support for
components, connections and ports. Components are implemented using exten-
sible component classes. ArchJava does not distinguish between required and
provided ports. Instead, a port declares required and provided methods. Ports
are again connected explicitly. Like the previous two languages, ArchJava allows
component composition only via nesting of subcomponents. A distinct feature
of the ArchJava type system is to guarantee communication integrity [41].

Ibrahim formalizes COM by introducing a small programming language
COMEL [31]. Similar to our approach, COMEL does not have named ports.
Services are specified solely by type names. In the spirit of COM, COMEL em-
phasizes aggregation and does not support implementation inheritance. COMEL
components have to be self-contained, not having any context dependencies. This
is a severe restriction that contradicts the aim to modularize software into small
components that have to depend on their deployment context in order to be
flexibly reusable.

Most concepts of component-oriented programming languages originate from
notions of architectural description languages (ADLs) like ACME [24], Aesop
[23], Darwin [37], Rapide [35], Wright [3] etc. ADLs are used to specify a soft-
ware architecture formally. A software architecture describes the organizational
structure of a software system in terms of a collection of components and re-
lationships among them [44,50]. Typically, a specification of a software archi-
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tecture contains information about the participating software components, the
connections between these components and constraints on the interactions [54].
By using ADLs, the details of a design get explicit and more precise, enabling
formal analysis techniques. Furthermore, they can help in understanding the
structure of a system, its implementation and reuse. A comparison of ADLs is
given in [40].

Advanced module linking [16,25] and component systems that are built on
top of a programming language can be used to model component systems as well.
Module systems with external linking facilities include SML’s functors [36] and
MzScheme’s units [20]. Opposed to our components, SML functors are neither
first-class nor higher-order. Consequently, they cannot be used to dynamically
manufacture modules. Furthermore, they are not extensible, which makes it
difficult to perform adaptations. An extension of SML with first-class modules
was recently proposed by Russo [47,48].

Unlike SML modules, units offer better support for component-oriented pro-
gramming [20,19]. They provide first-class module abstractions and linking fa-
cilities to compose modules hierarchically. Like all the component-oriented lan-
guages mentioned before, units are linked by explicitly connecting provided with
required ports. Since port descriptions of units are relatively fine-grained — they
are, in fact, just variable definitions —, this can be a tedious task. For this rea-
son, MzScheme supports signed units that support bundles of variables, called
signatures, being connected in one step [19]. Even thought superficially similar
to services in our component model, signatures are merely syntactic sugar and
are flattened to a linear list of variables. Jiazzi [38] is a working enhancement
of Java with support for large-scale software components based on MzScheme’s
units. Jiazzi ’s units are conceptually containers of compiled Java classes with
support for well-defined connections, specified by a number of imported and
exported classes.

A comparable module system for Java-like programming languages was pro-
posed by Ancona and Zucca [7]. This system is based on CMS [5,6], a sim-
ple but expressive calculus of modules which can be instantiated over an arbi-
trary core calculus. The calculus supports a large variety of module composi-
tion mechanisms including mixin module composition with overriding. Recently,
Hirschowitz and Leroy adapted the type system of CMS to a call-by-value set-
ting [29].

6 Conclusion

In this paper, we presented a component model that was designed to support the
implementation and evolution of lightweight, extensible components in object-
oriented programming languages. The model supports dynamic component man-
ufacturing and composition in a type-safe way through a minimal set of compo-
nent refinement primitives. Opposed to other approaches, we do not need to link
services of components explicitly. Instead, components are composed using high-
level composition operators. We formalized the component model as an extension
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of Featherweight Java and prove our type system to be sound with respect to
the operational semantics. Currently, we are investigating how to integrate our
component model into a full programming language.
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